5 resultados para cannabinoid system

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The herb Cannabis sativa (C. sativa) has been used in China and on the Indian subcontinent for thousands of years as a medicine. However, since it was brought to the UK and then the rest of the western world in the late 19th century, its use has been a source of controversy. Indeed, its psychotropic side effects are well reported but only relatively recently has scientific endeavour begun to find valuable uses for either the whole plant or its individual components. Here, we discuss evidence describing the endocannabinoid system, its endogenous and exogenous ligands and their varied effects on feeding cycles and meal patterns. Furthermore we also critically consider the mounting evidence which suggests non‐tetrahydrocannabinol phytocannabinoids play a vital role in C. sativa‐induced feeding pattern changes. Indeed, given the wide range of phytocannabinoids present in C. sativa and their equally wide range of intra‐, inter‐ and extra‐cellular mechanisms of action, we demonstrate that non‐Δ9tetrahydrocannabinol phytocannabinoids retain an important and, as yet, untapped clinical potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Happy facial expressions are innate social rewards and evoke a response in the striatum, a region known for its role in reward processing in rats, primates and humans. The cannabinoid receptor 1 (CNR1) is the best-characterized molecule of the endocannabinoid system, involved in processing rewards. We hypothesized that genetic variation in human CNR1 gene would predict differences in the striatal response to happy faces. In a 3T functional magnetic resonance imaging (fMRI) scanning study on 19 Caucasian volunteers, we report that four single nucleotide polymorphisms (SNPs) in the CNR1 locus modulate differential striatal response to happy but not to disgust faces. This suggests a role for the variations of the CNR1 gene in underlying social reward responsivity. Future studies should aim to replicate this finding with a balanced design in a larger sample, but these preliminary results suggest neural responsivity to emotional and socially rewarding stimuli varies as a function of CNR1 genotype. This has implications for medical conditions involving hypo-responsivity to emotional and social stimuli, such as autism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Humans from an early age look longer at preferred stimuli, and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in Autism Spectrum Conditions (ASC). However, it is unknown if gaze fixation patterns have any genetic basis. In this study, we tested if variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, involved in processing reward, and in our previous fMRI study we found variations in CNR1 modulates the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking). METHODS: 30 volunteers (13 males, 17 females) from the general population observed dynamic emotion expressions on a screen while their eye movements were recorded. They were genotyped for the identical four SNPs in the CNR1 gene tested in our earlier fMRI study. RESULTS: Two SNPs (rs806377 and rs806380) were associated with differential gaze duration for happy (but not disgust) faces. Importantly, the allelic groups associated with greater striatal response to happy faces in the fMRI study were associated with longer gaze duration for happy faces. CONCLUSIONS: These results suggest CNR1 variations modulate striatal function that underlies the perception of signals of social reward such as happy faces. This suggests CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing, such as ASC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses. Methods: We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus. Results: There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen. Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects. Keywords: reward, THCv, obesity, fMRI, cannabinoid

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and are typically associated with deficient in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered.