72 resultados para calmodulin-like domain protein kinase

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ROCO proteins are a family of large, multidomain proteins characterised by the presence of a Ras of complex proteins (ROC) domain followed by a COR, or C-terminal of ROC, domain. It has previously been shown that the ROC domain of the human ROCO protein Leucine Rich Repeat Kinase 2 (LRRK2) controls its kinase activity. Here, the ability of the ROC domain of another human ROCO protein, Death Associated Protein Kinase 1 (DAPK1), to bind GTP and control its kinase activity has been evaluated. In contrast to LRRK2, loss of GTP binding by DAPK1 does not result in loss of kinase activity, instead acting to modulate this activity. These data highlight the ROC domain of DAPK1 as a target for modifiers of this proteins function, and casts light on the role of ROC domains as intramolecular regulators in complex proteins with implications for a broad range of human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chaperone/usher pathway controls assembly of fibres of adhesive organelles of Gram-negative bacteria. The final steps of fibre assembly and fibre translocation to the cell surface are co-ordinated by the outer membrane proteins, ushers. Ushers consist of several soluble periplasmic domains and a single transmembrane beta-barrel. Here we report isolation and structural/functional characterization of a novel middle domain of the Caf1A usher from Yersinia pestis. The isolated UMD (usher middle domain) is a highly soluble monomeric protein capable of autonomous folding. A 2.8 angstrom (1 angstrom = 0.1 nm) resolution crystal structure of UMD revealed that this domain has an immunoglobulin-like fold similar to that of donor-strand-complemented Caf1 fibre subunit. Moreover, these proteins displayed significant structural similarity. Although UMD is in the middle of the predicted amphipathic beta-barrel of Caf1A, the usher still assembled in the membrane in the absence of this domain. UMD did not bind Caf1M-Caf1 complexes, but its presence was shown to be essential for Caf1 fibre secretion. The study suggests that UMD may play the role of a subunit-substituting protein (dummy subunit), plugging or priming secretion through the channel in the Caf1A usher. Comparison of isolated UMD with the recent strcture of the corresponding domain of PapC usher revealed high similarity of the core structures, suggesting a universal structural adaptation of FGL (F(1)G(1) long) and FGS (F(1)G(1) short) chaperone/usher pathways for the secretion of different types of fibres. The functional role of two topologically different states of this plug domain suggested by structural and biochemical results is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nontumorigenic, immortal line of murine melanocytes, Mel-ab, requires the continual presence of biologically active phorbol esters for growth (R. E. Wilson et al., Cancer Res., 49: 711–716, 1989). Comparable treatments of B16 murine melanoma cells result in partial inhibition of cell proliferation. The role of protein kinase C (PKC) in the modulation of growth of cells from these two melanocytic cell lines has been investigated. Significant levels of PKC were present in quiescent Mel-ab cells as determined by Western blotting, whereas no immunoreactive protein was detected in cell extracts from either proliferating Mel-ab or B16.F1 cells. Phosphorylation of a Mr 80,000 protein, which by one- and two-dimensional gel analysis comigrated with the known Mr 80,000 protein substrate of PKC in fibroblasts, was induced in 12-O-tetradecanoylphorbol-13-acetate-stimulated quiescent Mel-ab cells but not in proliferating Mel-ab cells or B16.F1 melanoma cells. Direct measurement of PKC activity in these cells demonstrated a 10-fold greater level of activity in quiescent Mel-ab cells (262 ± 50 pmol/min/mg SD) compared with growing cells (22.8 ± 11.8 pmol/min/mg SD). An intermediate level of activity was detected in proliferating B16.F1 melanoma cells (148.5 ± 20.4 pmol/min/mg SD). The subcellular distribution of PKC was dependent upon the growth state of the cells such that quiescent Mel-ab cells displayed a higher level of activity in the cytosol, whereas growing Melab cells displayed greater activity in the particulate fraction. Like many other transformed lines, B16.F1 melanoma cells constitutively expressed the majority of enzyme activity in the particulate fraction. Measurement of [3H]phorbol ester binding in intact cells paralleled the PKC activation data such that quiescent Mel-ab cells displayed binding of 1612 ± 147 cpm/106 cells, whereas proliferating Mel-ab and B16.F1 melanoma cells displayed binding of 652 ± 28 and 947 ± 81 cpm/106 cells, respectively. Membrane-permeant diacylglycerol analogues, which activated but did not down-regulate PKC, were devoid of growth-stimulating effects on melanocytes, even in the presence of the specific diacylglycerol kinase inhibitor, R59022. Together, these data show that PKC down-regulation, and not activation, correlates with the growth of melanocytes in culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin > BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular signal-regulated kinases 1/2 (ERK1/2) are activated in cardiomyocytes by Gq protein-coupled receptors and are associated with induction of hypertrophy. Here, we demonstrate that, in primary cardiomyocyte cultures, ERK1/2 were also significantly activated by platelet-derived growth factor (PDGF), epidermal growth factor (EGF) or fibroblast growth factor (FGF), but insulin, insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) had relatively minor effects. PDGF, EGF or FGF increased cardiomyocyte size via ERK1/2, whereas insulin, IGF-1 or NGF had no effect suggesting minimum thresholds/durations of ERK1/2 signaling are required for the morphological changes associated with hypertrophy. Peptide growth factors are widely accepted to activate phospholipase C gamma1 (PLCgamma1) and protein kinase C (PKC). In cardiomyocytes, only PDGF stimulated tyrosine phosphorylation of PLCgamma1 and nPKCdelta. Furthermore, activation of ERK1/2 by PDGF, but not EGF, required PKC activity. In contrast, EGF substantially increased Ras.GTP with rapid activation of c-Raf, whereas stimulation of Ras.GTP loading by PDGF was minimal and activation of c-Raf was delayed. Our data provide clear evidence for differential coupling of PDGF and EGF receptors to the ERK1/2 cascade, and indicate that a minimum threshold/duration of ERK1/2 signaling is required for the development of cardiomyocyte hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis induced by the death-inducing ligand FasL (CD95L) is a major mechanism of cell death. Trophoblast cells express the Fas receptor yet survive in an environment that is rich in the ligand. We report that basal nitric oxide (NO) production is responsible for the resistance of trophoblasts to FasL-induced apoptosis. In this study we demonstrate that basal NO production resulted in the inhibition of receptor clustering following ligand binding. In addition NO also protected cells through the selective nitrosylation, and inhibition, of protein kinase Cepsilon (PKCepsilon) but not PKCalpha. In the absence of NO production PKCepsilon interacted with, and phosphorylated, the anti-apoptotic protein cFLIP. The interaction is predominantly with the short form of cFLIP and its phosphorylation reduces its recruitment to the death-inducing signaling complex (DISC) that is formed following binding of a death-inducing ligand to its receptor. Inhibition of cFLIP recruitment to the DISC leads to increased activation of caspase 8 and subsequently to apoptosis. Inhibition of PKCepsilon using siRNA significantly reversed the sensitivity to apoptosis induced by inhibition of NO synthesis suggesting that NO-mediated inhibition of PKCepsilon plays an important role in the regulation of Fas-induced apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of protein kinase C (PKC) activation in ischemic preconditioning remains controversial. Since diacylglycerol is the endogenous activator of PKC and as such might be expected cardioprotective, we have investigated whether: (i) the diacylglycerol analog 1,2-dioctanoyl-sn-glycerol (DOG) can protect against injury during ischemia and reperfusion; (ii) any effect is mediated via PKC activation; and (iii) the outcome is influenced by the time of administration. Isolated rat hearts were perfused with buffer at 37°C and paced at 400 bpm. In Study 1, hearts (n=6/group) were subjected to one of the following: (1) 36 min aerobic perfusion (controls); (2) 20 min aerobic perfusion plus ischemic preconditioning (3 min ischemia/3 min reperfusion+5 min ischemia/5 min reperfusion); (3) aerobic perfusion with buffer containing DOG (10 μM) given as a substitute for ischemic preconditioning; (4) aerobic perfusion with DOG (10 μM) during the last 2 min of aerobic perfusion. All hearts then were subjected to 35 min of global ischemia and 40 min reperfusion. A further group (5) were perfused with DOG (10 μM) for the first 2 min of reperfusion. Ischemic preconditioning improved postischemic recovery of LVDP from 24±3% in controls to 71±2% (P<0.05). Recovery of LVDP also was enhanced by DOG when given just before ischemia (54±4%), however, DOG had no effect on the recovery of LVDP when used as a substitute for ischemic preconditioning (22±5%) or when given during reperfusion (29±6%). In Study 2, the first four groups of study were repeated (n=4–5/group) without imposing the periods of ischemia and reperfusion, instead hearts were taken for the measurement of PKC activity (pmol/min/mg protein±SEM). PKC activity after 36 min in groups (1), (2), (3) and (4) was: 332±102, 299±63, 521±144, and 340±113 and the membrane:cytosolic PKC activity ratio was: 5.6±1.5, 5.3±1.8, 6.6±2.7, and 3.9±2.1 (P=NS in each instance). In conclusion, DOG is cardioprotective but under the conditions of the present study is less cardioprotective than ischemic preconditioning, furthermore the protection does not appear to necessitate PKC activation prior to ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signal transduction pathways that mediate the cardioprotective effects of ischemic preconditioning remain unclear. Here we have determined the role of a novel kinase, protein kinase D (PKD), in mediating preconditioning in the rat heart. Isolated rat hearts (n=6/group) were subjected to either: (i) 36 min aerobic perfusion (control); (ii) 20 min aerobic perfusion plus 3 min no-flow ischemia, 3 min reperfusion, 5 min no-flow ischemia, 5 min reperfusion (ischemic preconditioning); (iii) 20 min aerobic perfusion plus 200 nmol/l phorbol 12-myristate 13-acetate (PMA) given as a substitute for ischemic preconditioning. The left ventricle then was excised, homogenized and PKD immunoprecipitated from the homogenate. Activity of the purified kinase was determined following bincubation with [γ32P]-ATP±syntide-2, a substrate for PKD. Significant PKD autophosphorylation and syntide-2 phosphorylation occurred in PMA-treated hearts, but not in control or preconditioned hearts. Additional studies confirmed that recovery of LVDP was greater and initiation of ischemic contracture and time-to-peak contracture were less, in ischemic preconditioned hearts compared with controls (P<0.05). Our results suggest that the early events that mediate ischemic preconditioning in the rat heart occur via a PKD-independent mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Protein kinase C (PKC) plays a pivotal role in modulating the growth and differentiation of many cell types including the cardiac myocyte. However, little is known about molecules that act immediately downstream of PKC in the heart. In this study we have investigated the expression of 80K/MARCKS, a major PKC substrate, in whole ventricles and in cardiac myocytes from developing rat hearts. Methods: Poly A+ RNA was prepared from neonatal (2-day) and adult (42-day) cardiac myocytes and whole ventricular tissue and mRNA expression determined by reverse transcription-polymerase chain reaction (RT-PCR) using primers designed to identify a 420 bp fragment in the 80K/MARCKS gene. Protein extracts were prepared from either 2-day and 42-day cardiac myocytes or from whole ventricular tissue at 2, 5–11, 14, 17, 21, 28 and 42 days of age. Protein expression was determined by immunoblotting with an 80K/MARCKS antipeptide antibody and PKC activity was determined by measuring the amount of γ32P-ATP transferred to a specific peptide substrate. Results: RT-PCR analysis of 80K/MARCKS mRNA in neonatal (2-day) and adult (42-day) cardiac myocytes showed the expression of this gene in both cell types. Immunoblotting revealed maximum 80K/MARCKS protein expression in whole ventricular tissue at 5 days (a 75% increase above values at 2 days), followed by a transient decrease in expression during the 6–8-day period (61% of the protein expressed at 2 days for 8-day tissue) with levels returning to 5 day levels by 11 days of age. 80K/MARCKS protein was present in cardiac myocytes at 2 days of age whereas it was not detectable in adult cells. In addition, PKC activity levels increased to 160% of levels present at 2 days in 8-day-old ventricles with PKC activity levels returning to 5-day levels by 9 days of age. This was then followed by a steady decline in both 80K/MARCKS protein expression and PKC activity through to adulthood. Conclusions: Expression of the PKC substrate, 80K/MARCKS, in cardiac myocytes changes significantly during development and the transient loss of immunoreactive protein during the 6–8-day developmental period may reflect 80K/MARCKS phosphorylation and subsequent down-regulation as a result of the concomitant up-regulation of PKC activity at this time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) down-regulation has been shown to correlate with the growth of murine melanocytic cells in culture (Brooks, G., Wilson, R. E., Dooley, T. P., Goss, M. W., and Hart, I. R. (1991) Cancer Res. 51, 3281-3288). We now show that PKC alpha, delta, epsilon, and zeta isoforms are present at the protein level in quiescent, non-transformed Mel-ab melanocytes, maintained in the absence of phorbol ester. Proliferation of Mel-ab cells, achieved by incubation in the continual presence of phorbol 12,13-dibutyrate, was associated with a down-regulation of the PKC alpha, delta, and epsilon isozymes. Examination of two transformed syngeneic lines (the B16 murine melanoma and the long terminal repeat Ras.2 line), that grew in the absence of exogenous phorbol esters, showed that PKC alpha protein levels were either partially down-regulated or unaffected, the PKC delta and epsilon isoforms were down-regulated completely, and the levels of PKC zeta protein remained unaltered relative to quiescent Mel-ab cells. Basal levels of total diacylglycerol were elevated 5-fold in B16 melanoma cells compared with levels found in quiescent or proliferating Mel-ab melanocytes and appear to arise largely from the breakdown of phosphatidylinositol phospholipids accompanied by a significant rise in phospholipase C activity. Hourly treatments of quiescent Mel-ab melanocytes with the synthetic diacylglycerol analogue, 1,2-dioctanoyl-sn-glycerol, for 24 h, resulted in an induction of DNA synthesis which was associated with a significant down-regulation of PKC levels mediated largely via post-translational rather than transcriptional mechanisms. These results show for the first time that specific isoforms of PKC are down-regulated at the protein level during proliferation of murine melanocytic cells and suggest that the constitutive down-regulation of PKC in transformed melanoma cells may arise as a consequence of elevated endogenous phosphatidylinositol-derived diacylglycerol levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sapintoxin A (SAP A) and 12-deoxyphorbol 13-phenylacetate (DOPP), are two biologically active but non-turnour-promoting phorbol esters that potently bind to and activate the phorbol ester receptor, protein kinase C (PKC). SAP A and DOPP cause a dose-dependent increase in the phosphorylation of an 80 kd (80K) substrate protein for PKC in Swiss 3T3 cells. A similar dose—response effect was seen with sapintoxin D (SAP D), the stage 2 promoting analogue of 12-O-tetradecanoylphorbol-13-acetate and the complete promoter phorbol 12,13-dibutyrate (PDB). The doses resulting in a half maximal phosphorylation of this protein (Ka were 20 nM (SAP A), 45 nM (DOPP), 23 nM (SAP D) and 37 nM (PDB). Both non-promoting and phorbol esters induced a dose-dependent inhibition of [125I]epidermal growth factor (EGF) binding to its receptor in Swiss 3T3 cells. The doses required for 50% inhibition of binding (Ki) were: 8 nM (SAP A), 16 nM (DOPP), 14 nM (SAP D) and 17 nM (PDB). The results clearly demonstrate that induction of phosphorylation of the Pu 80K phosphoprotein and inhibition of [125I]EGF binding in Swiss 3T3 cells following exposure to phorbol esters is independent of the tumour-promoting activity of these compounds. The fact that SAP A, DOPP, SAP D and PDB are mitogenic for a variety of cell types and that exposure to these compounds leads to 80K phosphorylation and inhibition of [125I]EGF binding, suggests that these early biological events may play a role in the mitogenic response induced by these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sapintoxins are a series of naturally occurring fluorescent phorbol esters with a range of selective biological activities (e.g. pro-inflammatory but non-tumour promoting). Their ability to activate protein kinase C (PKC) in vitro has been studied. Both tumour promoting and non-promoting phorbol derivatives activate the enzyme in vitro at low concentrations. 12-deoxyphorbol-13-phenylacetate-20 acetate (DOPPA) acts as a partial agonist in the activation of protein kinase C. Structurally distinct phorbol esters may therefore preferentially activate different forms of protein kinase C. -sapinine, a biologically inactive compound, binds to protein kinase C without stimulating the enzyme and prevents subsequent activation by phorbol esters such as 12-O-tetradecanoyl phorbol-13-acetate (TPA).