12 resultados para calcium release

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

What is already known about this subject center dot Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. center dot In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. center dot Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid-TP interaction inhibits signalling downstream TP has not been shown. What this study adds center dot This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. center dot Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA(2) receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TP alpha- and TP beta-transfected HEK 293T cells was explored using binding assays and the TP antagonist H-3-SQ29548. Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium mobilization in a concentration-dependent manner (IC50 10-30 mu M). These flavonoids caused a significant impairment of U46619-induced platelet tyrosine phosphorylation and of ERK 1/2 activation. By contrast, in aspirin-treated platelets all these flavonoids, except quercetin, displayed minor effects on thrombin-induced calcium mobilization, ERK 1/2 and total tyrosine phosphorylation. Finally, apigenin, genistein and luteolin inhibited by > 50% H-3-SQ29548 binding to different cell types. These data further suggest that flavonoids may inhibit platelet function by binding to TP and by subsequent abrogation of downstream signalling. Binding of these compounds to TP occurs in human myometrium and in TP-transfected HEK 293T cells and suggests that antagonism of TP might mediate the effects of flavonoids in different tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPARbeta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXRalpha and RXRbeta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoid X receptors (RXRs) are important transcriptional nuclear hormone receptors, acting as either homodimers or the binding partner for at least one fourth of all the known human nuclear receptors. Functional nongenomic effects of nuclear receptors are poorly understood; however, recently peroxisome proliferator-activated receptor (PPAR) gamma, PPAR beta, and the glucocorticoid receptor have all been found active in human platelets. Human platelets express RXR alpha, and RXR beta. RXR ligands inhibit platelet aggregation and TXA(2) release to ADP and the TXA(2) receptors, but only weakly to collagen. ADP and TXA(2) both signal via the G protein, Gq. RXR rapidly binds Gq but not Gi/z/o/t/gust in a ligand-dependent manner and inhibits Gq-induced Rac activation and intracellular calcium release. We propose that RXR ligands may have beneficial clinical actions through inhibition of platelet activation. Furthermore, our results demonstrate a novel nongenomic mode for nuclear receptor action and a functional cross-talk between G-protein and nuclear receptor signaling families. (C) 2007 by The American Society of Hematology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormones (T) and estrogens (E) are nuclear receptor ligands with at least two molecular mechanisms of action: (i) relatively slow genomic effects, such as the regulation of transcription by cognate T receptors (TR) and E receptors (ER); and (ii) relatively rapid nongenomic effects, such as kinase activation and calcium release initiated at the membrane by putative membrane receptors. Genomic and nongenomic effects were thought to be disparate and independent. However, in a previous study using a two-pulse paradigm in neuroblastoma cells, we showed that E acting at the membrane could potentiate transcription from an E-driven reporter gene in the nucleus. Because both T and E can have important effects on mood and cognition, it is possible that the two hormones can act synergistically. In this study, we demonstrate that early actions of T via TRalpha1 and TRbeta1 can potentiate E-mediated transcription (genomic effects) from a consensus E response element (ERE)-driven reporter gene in transiently transfected neuroblastoma cells. Such potentiation was reduced by inhibition of mitogen-activated protein kinase. Using phosphomutants of ERalpha, we also show that probable mitogen-activated protein kinase phosphorylation sites on the ERalpha, the serines at position 167 and 118, are important in TRbeta1-mediated potentiation of ERalpha-induced transactivation. We suggest that crosstalk between T and E includes potential interactions through both nuclear and membrane-initiated molecular mechanisms of hormone signaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca2+-dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca2+ responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca2+ channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A–siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca2+ current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: In cerebral arteries, nitric oxide (NO) release plays a key role in suppressing vasomotion. Our aim was to establish the pathways affected by NO in rat middle cerebral arteries. Methods: In isolated segments of artery, isometric tension and simultaneous measurements of either smooth muscle membrane potential or intracellular [Ca 2+ ] ([Ca 2+ ] SMC ) changes were recorded. Results: In the absence of L -NAME, asynchronous propagating Ca 2+ waves were recorded that were sensitive to block with ryanodine, but not nifedipine. L -NAME stimulated pronounced vasomotion and synchronous Ca 2+ oscillations with close temporal coupling between membrane potential, tone and [Ca 2+ ] SMC . If nifedipine was applied together with L -NAME, [Ca 2+ ] SMC decreased and synchronous Ca 2+ oscillations were lost, but asynchronous propagating Ca 2+ waves persisted. Vasomotion was similarly evoked by either iberiotoxin, or by ryanodine, and to a lesser extent by ODQ. Exogenous application of NONOate stimulated endothelium-independent hyperpolarization and relaxation of either L -NAME-induced or spontaneous arterial tone. NO-evoked hyperpolarization involved activation of BK Ca channels via ryanodine receptors (RYRs), with little involvement of sGC. Further, in whole cell mode, NO inhibited current through L-type voltage-gated Ca 2+ channels (VGCC), which was independent of both voltage and sGC. Conclusion: NO exerts sGC-independent actions at RYRs and at VGCC, both of which normally suppress cerebral artery myogenic tone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. alpha-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of alpha-synuclein-derived pathology. alpha-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that alpha-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of alpha-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that alpha-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which alpha-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of alpha-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.