59 resultados para brushless excitation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were ∼1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime (τ2 = 1.9–3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there is significant nuclear absorption of flavanols. This advanced imaging using two-photon excitation and biophysical techniques described here will prove valuable for probing the intracellular trafficking and functions of flavanols, such as EGCG, which is the major flavanol of green tea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin–Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5 Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic concepts of the form of high-latitude ionospheric flows and their excitation and decay are discussed in the light of recent high time-resolution measurements made by ground-based radars. It is first pointed out that it is in principle impossible to adequately parameterize these flows by any single quantity derived from concurrent interplanetary conditions. Rather, even at its simplest, the flow must be considered to consist of two basic time-dependent components. The first is the flow driven by magnetopause coupling processes alone, principally by dayside reconnection. These flows may indeed be reasonably parameterized in terms of concurrent near-Earth interplanetary conditions, principally by the interplanetary magnetic field (IMF) vector. The second is the flow driven by tail reconnection alone. As a first approximation these flows may also be parameterized in terms of interplanetary conditions, principally the north-south component of the IMF, but with a delay in the flow response of around 30-60 min relative to the IMF. A delay in the tail response of this order must be present due to the finite speed of information propagation in the system, and we show how "growth" and "decay" of the field and flow configuration then follow as natural consequences. To discuss the excitation and decay of the two reconnection-driven components of the flow we introduce that concept of a flow-free equilibrium configuration for a magnetosphere which contains a given (arbitrary) amount of open flux. Reconnection events act either to create or destroy open flux, thus causing departures of the system from the equilibrium configuration. Flow is then excited which moves the system back towards equilibrium with the changed amount of open flux. We estimate that the overall time scale associated with the excitation and decay of the flow is about 15 min. The response of the system to both impulsive (flux transfer event) and continuous reconnection is discussed in these terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review presents recent observations of high-latitude ionospheric plasma convection, obtained using the EISCAT radar in the 'Polar' experiment mode. The paper is divided into two main parts. Firstly, the delay in the response of dayside high-latitude flows to changes in the interplanetary magnetic field is discussed. The results show the importance for the excitation of dayside convection of the transfer of magnetic flux from the dayside into the tail lobe. Consequently, ionospheric convection should be thought of as the sum of two intrinsically time-dependent flow patterns. The first of these patterns is directly driven by solar wind-magnetosphere coupling, dominates ionospheric flows on the dayside, is associated with an expanding polar cap area and is the F-region flow equivalent of the DP-2 E-region current system. The second of the two patterns is driven by the release of energy stored in the geomagnetic tail, dominates ionospheric flows on the nightside, is associated with a contracting polar cap and is equivalent to the DP-1, or substorm, current system. In the second half of the paper, various transient flow bursts observed in the vicinity of the dayside cusp are studied. These radar data, combined with simultaneous optical observations of transient dayside aurorae, strongly suggest that momentum is transferred across the magnetopause and into the ionosphere in a series of bursts, each associated with voltages of 30-80 kV. Similarities between these bursts and flux transfer events observed at the magnetopause are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the “Polar” experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength of the IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The state-resolved reaction probability of CH4 on Pt�110-�1�2 was measured as a function of CH4 translational energy for four vibrational eigenstates comprising different amounts of C-H stretch and bend excitation. Mode-specific reactivity is observed both between states from different polyads and between isoenergetic states belonging to the same polyad of CH4. For the stretch/bend combination states, the vibrational efficacy of reaction activation is observed to be higher than for either pure C-H stretching or pure bending states, demonstrating a concerted role of stretch and bend excitation in C-H bond scission. This concerted role, reflected by the nonadditivity of the vibrational efficacies, is consistent with transition state structures found by ab initio calculations and indicates that current dynamical models of CH4 chemisorption neglect an important degree of freedom by including only C-H stretching motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arousal sometimes enhances and sometimes impairs perception and memory. In our Glutamate Amplifies Noradrenergic Effects (GANE) model, glutamate at active synapses interacts with norepinephrine released by the locus coeruleus to create local ‘hot spots’ of activity that enable the selective effects of arousal. This hot spot mechanism allows local cortical regions to self-regulate norepinephrine release based on current activation levels. In turn, hot spots bias global energetic delivery and functional network connectivity to enhance processing of high priority representations and impair processing of lower priority representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This brief proposes a new method for the identification of fractional order transfer functions based on the time response resulting from a single step excitation. The proposed method is applied to the identification of a three-dimensional RC network, which can be tailored in terms of topology and composition to emulate real time systems governed by fractional order dynamics. The results are in excellent agreement with the actual network response, yet the identification procedure only requires a small number of coefficients to be determined, demonstrating that the fractional order modelling approach leads to very parsimonious model formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baroclinic wave development is investigated for unstable parallel shear flows in the limit of vanishing normal-mode growth rate. This development is described in terms of the propagation and interaction mechanisms of two coherent structures, called counter-propagating Rossby waves (CRWs). It is shown that, in this limit of vanishing normal-mode growth rate, arbitrary initial conditions produce sustained linear amplification of the marginally neutral normal mode (mNM). This linear excitation of the mNM is subsequently interpreted in terms of a resonance phenomenon. Moreover, while the mathematical character of the normal-mode problem changes abruptly as the bifurcation point in the dispersion diagram is encountered and crossed, it is shown that from an initial-value viewpoint, this transition is smooth. Consequently, the resonance interpretation remains relevant (albeit for a finite time) for wavenumbers slightly different from the ones defining cut-off points. The results are further applied to a two-layer version of the classic Eady model in which the upper rigid lid has been replaced by a simple stratosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved amplifier for atmospheric fine wire resistance thermometry is described. The amplifier uses a low excitation current (50 mu A). This is shown to ensure negligible self-heating of the low mass fine wire resistance sensor, compared with measured nocturnal surface air temperature fluctuations. The system provides sufficient amplification for a +/- 50 degrees C span using a +/- 5 V dynamic range analog-to-digital converter, with a noise level of less than 0.01 degrees C. A Kelvin four-wire connection cancels the effect of long lead resistances: a 50 m length of screened cable connecting the Reading design of fine wire thermometer to the amplifier produced no measurable temperature change at 12 bit resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple model for the effective vibrational hamiltonian of the XH stretching vibrations in H2O, NH3 and CH4 is considered, based on a morse potential function for the bond stretches plus potential and kinetic energy coupling between pairs of bond oscillators. It is shown that this model can be set up as a matrix in local mode basis functions, or as a matrix in normal mode basis functions, leading to identical results. The energy levels obtained exhibit normal mode patterns at low vibrational excitation, and local mode patterns at high excitation. When the hamiltonian is set up in the normal mode basis it is shown that Darling-Dennison resonances must be included, and simple relations are found to exist between the xrs, gtt, and Krrss anharmonic constants (where the Darling-Dennison coefficients are denoted K) due to their contributions from morse anharmonicity in the bond stretches. The importance of the Darling-Dennison resonances is stressed. The relationship of the two alternative representations of this local mode/normal mode model are investigated, and the potential uses and limitations of the model are discussed.