25 resultados para breast cell
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper addresses the question of whether p-hydroxybenzoic acid, the common metabolite of parabens, possesses oestrogenic activity in human breast cancer cell lines. The alkyl esters of p-hydroxybenzoic acid (parabens) are used widely as preservatives in consumer products to which the human population is exposed and have been shown previously to possess oestrogenic activity and to be present in human breast tumour tissue, which is an oestrogen-responsive tissue. Recent work has shown p-hydroxybenzoic acid to give an oestrogenic response in the rodent uterotrophic assay. We report here that p-hydroxybenzoic acid possesses oestrogenic activity in a panel of assays in human breast cancer cell lines. p-Hydroxybenzoic acid was able to displace [H-3]oestradiol from cytosolic oestrogen receptor of MCF7 human breast cancer cells by 54% at 5 x 10(6)-fold molar excess and by 99% at 10(7)-fold molar excess. It was able to increase the expression of a stably integrated oestrogen responsive reporter gene (ERE-CAT) at a concentration of 5 x 10(-4) M in MCF7 cells after 24 h and 7 days, which could be inhibited by the anti-oestrogen ICI 182 780 (Faslodex, fulvestrant). Proliferation of two human breast cancer cell lines (MCF7, ZR-75-1) could be increased by 10(-5) M p-hydroxybenzoic acid. Following on from previous studies showing a decrease in oestrogenic activity of parabens with shortening of the linear alkyl chain length, this study has compared the oestrogenic activity of p-hydroxybenzoic acid where the alkyl grouping is no longer present with methylparaben, which has the shortest alkyl group. Intrinsic oestrogenic activity of p-hydroxybenzoic acid was similar to that of methylparaben in terms of relative binding to the oestrogen receptor but its oestrogenic activity on gene expression and cell proliferation was lower than that of methylparaben. It can be concluded that removal of the ester group from parabens does not abrogate its oestrogenic activity and that p-hydroxybenzoic acid can give oestrogenic responses in human breast cancer cells. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
Background: MCF-7, T-47-D, ZR-75-1 human breast cancer cell lines are dependent on oestrogen for growth but can adapt to grow during long-term oestrogen deprivation. This serves as a model for identification of therapeutic targets in endocrine-resistant breast cancer. Methods: An overlooked complication of this model is that it involves more than non-addition of oestrogen, and inadequate attention has been given to separating molecular events associated with each of the culture manipulations. Results: Insulin and oestradiol were shown to protect MCF-7 cells against upregulation of basal growth, demonstrating a crosstalk in the growth adaptation process. Increased phosphorylation of p44/42MAPK and c-Raf reflected removal of insulin from the medium and proliferation of all three cell lines was inhibited to a lesser extent by PD98059 and U0126 following long-term oestrogen/insulin withdrawal, demonstrating a reduced dependence on the MAPK pathway. By contrast, long-term oestrogen/insulin deprivation did not alter levels of phosphorylated Akt and did not alter the dose-response of growth inhibition with LY294002 in any of the three cell lines. The IGF1R inhibitor picropodophyllin inhibited growth of all MCF-7 cells but only in the long-term oestrogen/insulin-deprived cells was this paralleled by reduction in phosphorylated p70S6K, a downstream target of mTOR. Long-term oestrogen/insulin-deprived MCF-7 cells had higher levels of phosphorylated p70S6K and developed increased sensitivity to growth inhibition by rapamycin. Conclusions: The greater sensitivity to growth inhibition by rapamycin in all three cell lines following long-term oestrogen/insulin deprivation suggests rapamycin-based therapies might be more effective in breast cancers with acquired oestrogen resistance. Keywords Akt, breast cancer cells, endocrine resistance, insulin, MAPK, MCF-7 cells, mTOR, oestrogen, oestrogen-deprived, PI3K, picropodophyllin, rapamycin, T-47-D cells, ZR-75-1 cells
Resumo:
The soybean-derived protease inhibitor, Bowman-Birk inhibitor (BBI), is currently showing great promise as a novel cancer chemopreventive agent. In contrast to the wealth of research conducted on this compound, the anticancer effects of protease inhibitors isolated from other leguminous sources have received limited attention. In the current study, 7 protease inhibitor concentrates (PICs) were isolated from various leguminous sources (including soybean) and characterized. The effects of PICs on the proliferation of breast and prostate cancer cells were investigated in vitro. Chickpea PIC significantly inhibited the viability of MDA-MB-231 breast cancer and PC-3 and LNCaP prostate cancer cells at all concentrations tested (25-400 μg/ml). In addition, kidney bean (200, 400 μg/ml), soybean (50, 100 μg/ml), and mungbean (100, 200 μg/ml) PICs inhibited LNCaP cell viability. These findings suggest that leguminous PICs may possess similar anticancer properties to that of soybean BBI and deserve further study as possible chemopreventive agents.
Resumo:
The health benefits of garlic have been proven by epidemiological and experimental studies. Diallyl disulphide (DADS), the major organosulfur compound found in garlic oil, is known to lower the incidence of breast cancer both in vitro and in vivo. The studies reported here demonstrate that DADS induces apoptosis in the MCF-7 breast-cancer cell line through interfering with cell-cycle growth phases in a way that increases the sub-G0 population and substantially halts DNA synthesis. DADS also induces phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane and activates caspase-3. Further studies revealed that DADS modulates the cellular levels of Bax, Bcl-2, Bcl-xL and Bcl-w in a dose-dependent manner, suggesting the involvement of Bcl-2 family proteins in DADS induced apoptosis. Histone deacetylation inhibitors (HDACi) are known to suppress cancer growth and induce apoptosis in cancer cells. Here it is shown that DADS has HDACi properties in MCF-7 cells as it lowers the removal of an acetyl group from an acetylated substrate and induces histone-4 (H4) hyper-acetylation. The data thus indicate that the HDACi properties of DADS may be responsible for the induction of apoptosis in breast cancer cells.
Resumo:
Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [H-3]oestradiol from recombinant human oestrogen receptors ER alpha and ER beta, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 x 10(-5) to 5 x 10(-4) M, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10(-8) M 17 beta-oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10(-8) M 17 beta-oestradiol, given a longer time period of 35 days the extent of proliferation with 10(-4) M benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10(-8) M 17 beta-oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [H-3]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphadon of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.
Resumo:
Cell culture models of antioestrogen resistance often involve applying selective pressures of oestrogen deprivation simultaneously with addition of tamoxifen or fulvestrant (Faslodex, ICI 182,780) which makes it difficult to distinguish events in development of antioestrogen resistance from those in loss of response to oestrogen or other components. We describe here time courses of loss of antioestrogen response using either oestrogen-maintained or oestrogen-deprived MCF7 cells in which the only alteration to the culture medium was addition of 10(-6) M tamoxifen or 10(-7) M fulvestrant. In both oestrogen-maintained and oestrogen-deprived models, loss of growth response to tamoxifen was not associated with loss of response to fulvestrant. However, loss of growth response to fulvestrant was associated in both models with concomitant loss of growth response to tamoxifen. Measurement of oestrogen receptor alpha (ER alpha) and oestrogen receptor beta (ER beta) mRNA by real-time RT-PCR together with ER alpha and ER beta protein by Western immunoblotting revealed substantial changes to ER alpha levels but very little alteration to ER beta levels following development of antioestrogen resistance. In oestrogen-maintained cells, tamoxifen resistance was associated with raised levels of ERa mRNA/protein. However by contrast, in oestrogen-deprived MCF7 cells, where oestrogen deprivation alone had already resulted in increased levels of ERa mRNA/protein, long-term tamoxifen exposure now reduced ER alpha levels. Whilst long-term exposure to fulvestrant reduced ERa. mRNA/protein levels in the oestrogen-maintained cells to a level barely detectable by Western immunoblotting and non-functional in inducing gene expression (ERE-LUC reporter or pS2), in oestrogen-deprived cells the reduction was much less substantial and these cells retained an oestrogen-induction of both the ERE-LUC reporter gene and the endogenous pS2 gene which could still be inhibited by antioestrogen. This demonstrates that whilst ER alpha can be abrogated by fulvestrant and increased by tamoxifen in some circumstances, this does not always hold true and mechanisms other than alteration to ER must be involved in the development of antioestrogen resistant growth. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have compared the oestrogenic properties of phytoestrogens in a wide variety of disparate assays. Since not all phytoestrogens have been tested in each assay, this makes inter-study comparisons and ranking oestrogenic potency difficult. In this report, we have compared the oestrogen agonist and antagonist activity of eight phytoestrogens (genistein, daidzein, equol, miroestrol, deoxymiroestrol, 8-prenylnaringenin, coumestrol and resveratrol) in a range of assays all based within the same receptor and cellular context of the MCF7 human breast cancer cell line. The relative binding of each phytoestrogen to oestrogen receptor (ER) of MCF7 cytosol was calculated from the molar excess needed for 50 % inhibition of [H-3]oestradiol binding (IC50), and was in the order coumestrol (35x)/8-prenylnaringenin (45 x)/deoxymiroestrol (50 x) > miroestrol (260x) > genistein (1000x) > equol (4000x) > daidzein (not achieved: 40 % inhibition at 10(4)-fold molar excess) > resveratrol (not achieved: 10 % inhibition at 10(5)-fold molar excess). For cell-based assays, the rank order of potency (estimated in terms of the concentration needed to achieve a response equivalent to 50 % of that found with 17 beta-oestradiol (IC50)) remained very similar for all the assays whether measuring ligand ability to induce a stably transfected oestrogen-responsive ERE-CAT reporter gene, cell growth in terms of proliferation rate after 7 days or cell growth in terms of saturation density after 14 days. The IC50 values for these three assays in order were for 17 beta-oestradiol (1 x 10-(11) M, 1 x 10-(11) M, 2 x 10(-11) M), and in rank order of potency for the phytoestrogens, deoxymiroestrol (1 x 10(-10) M, 3 x 10(-11) M, 2 x 10(-11) M) > miroestrol (3 x 10(-10) M, 2 x 10(-11) M, 8 x 10(-11) M) > 8-prenylnaringenin (1 x 10(-9) M, 3 x 10(-10) M, 3 x 10(-10) M) > cournestrol (3 x 10(-8) M, 2 x 10(-8) M, 3 x 10(-8) M) > genistein (4 x 10(-8) M, 2 x 10(-8) M, 1 x 10(-8) M)/equol (1 x 10(-7) M, 3 x 10(-8) M, 2 x 10(-8) M) > daidzein (3 x 10(-7) M, 2 x 10(-7) M, 4 x 10(-8) M) > resveratrol (4 x 10(-6) M, not achieved, not achieved). Despite using the same receptor context of the MCF7 cells, this rank order differed from that determined from receptor binding. The most marked difference was for cournestrol and 8-prenylnaringenin which both displayed a relatively potent ability to displace [3H]oestradiol from cytosolic ER compared with their much lower activity in the cell-based assays. Albeit at varying concentrations, seven of the eight phytoestrogens (all except resveratrol) gave similar maximal responses to that given by 17 beta-oestradiol in cell-based assays which makes them full oestrogen agonists. We found no evidence for any oestrogen antagonist action of any of these phytoestrogens at concentrations of up to 10(-6) M on either reporter gene induction or on stimulation of cell growth. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The cellular actions of genistein are believed to mediate the decreased risk of breast cancer associated with high soy consumption. We have investigated the intracellular metabolism of genistein in T47D tumorigenic and MCF-10A nontumorigenic cells and assessed the cellular actions of resultant metabolites. Genistein selectively induced growth arrest and G2-M phase cell cycle block in T47D but not MCF10A breast epithelial cells. These antiproliferative effects were paralleled by significant differences in the association of genistein to cells and in particular its intracellular metabolism. Genistein was selectively taken up into T47D cells and was subject to metabolism by CYP450 enzymes leading to the formation of both 5,7,3',4'-tetrahydroxyisoflavone (THIF) and two glutathionyl conjugates of THIF THIF inhibited cdc2 activation via the phosphorylation of p38 MAP kinase, suggesting that this species may mediate genistein's cellular actions. THIF exposure activated p38 and caused subsequent inhibition of cyclin B1 (Ser 147) and cdc2 (Thr 161) phosphorylation, two events critical for the correct functioning of the cdc2-cyclin B1 complex. We suggest that the formation of THIF may mediate the cellular actions of genistein in tumorigenic breast epithelial cells via the activation of signaling through p38. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Recently we have described an HPMA copolymer conjugate carrying both the aromatase inhibitor aminoglutethimide (AGM) and doxorubicin (Dox) as combination therapy. This showed markedly enhanced in vitro cytotoxicity compared to the HPMA copolymer-Dox (FCE28068), a conjugate that demonstrated activity in chemotherapy refractory breast cancer patients during early clinical trials. To better understand the superior activity of HPMA copolymer-Dox-AGM, here experiments were undertaken using MCF-7 and MCF-7ca (aromatase-transfected) breast cancer cell lines to: further probe the synergistic cytotoxic effects of AGM and Dox in free and conjugated form; to compare the endocytic properties of HPMA copolymer-Dox-AGM and HPMA copolymer-Dox (binding, rate and mechanism of cellular uptake); the rate of drug liberation by lysosomal thiol-dependant proteases (i.e. conjugate activation), and also, using immunocytochemistry, to compare their molecular mechanism of action. It was clearly shown that attachment of both drugs to the same polymer backbone was a requirement for enhanced cytotoxicity. FACS studies indicated both conjugates have a similar pattern of cell binding and endocytic uptake (at least partially via a cholesterol-dependent pathway), however, the pattern of enzyme-mediated drug liberation was distinctly different. Dox release from PK1 was linear with time, whereas the release of both Dox and AGM from HPMA copolymer-Dox-AGM was not, and the initial rate of AGM release was much faster than that seen for the anthracycline. Immunocytochemistry showed that both conjugates decreased the expression of ki67. However, this effect was more marked for HPMA copolymer-Dox-AGM and, moreover, only this conjugate decreased the expression of the anti-apoptotic protein bcl-2. In conclusion, the superior in vitro activity of HPMA copolymer-Dox-AGM cannot be attributed to differences in endocytic uptake, and it seems likely that the synergistic effect of Dox and AGM is due to the kinetics of intracellular drug liberation which leads to enhanced activity. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Bis-[(p-methoxybenzyl)cyclopentadienyl] titanium dichloride, better known as Titanocene Y, is a newly synthesized transition metal-based anticancer drug. We studied the antitumor activity of Titanocene Y with concentrations of 2.1, 21 and 210 mu mol/l against a freshly explanted human breast cancer, using an in-vitro soft agar cloning system. The sensitivity against Titanocene Y was highly remarkable in the breast cancer tumor in the full concentration range. Titanocene Y showed cell death induction at 2.1 mu mol/l, well comparable to cisplatin, given at a concentration of 1.0 mu mol/l. A further preclinical development of Titanocene Y was warranted and therefore an MCF-7 human breast cancer xenograft nonobese diabetic/severe combined immunodeficient mouse model was used. Titanocene Y was given for 21 days at 30 mg/kg/ day (75% of the maximum tolerable dose of Titanocene Y), which resulted in the reduction of the tumor volume to around one-third, whereas no mouse was lost because of the surprisingly low toxicity of Titanocene Y.
Resumo:
Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 105, 106 and 107 bacteria/mL were co-cultured with PBMC (106/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.
Resumo:
Background: Cellular effects of oestrogen are mediated by two intracellular receptors ERα and ERβ. However, to compare responses mediated through these two receptors, experimental models are needed where ERα and ERβ are individually stably overexpressed in the same cell type. Methods: We compared the effects of stable overexpression of ERα and ERβ in the MCF10A cell line, which is an immortalised but non-transformed breast epithelial cell line without high endogenous ER expression. Results: Clones of MCF10A cells were characterised which stably overexpressed ERα (10A-ERα2, 10A-ERα13) or which stably overexpressed ERβ (10A-ERβ12, 10A-ERβ15). Overexpression of either ERα or ERβ allowed induction of an oestrogen-regulated ERE-LUC reporter gene by oestradiol which was not found in the untransfected cells. Oestradiol also increased proliferation of 10A-ERα13 and 10A-ERβ12 cells, but not untransfected cells, by 1.3-fold over 7 days. The phytoestrogen, genistein, which is reported to bind more strongly to ERβ than to ERα, could induce luciferase gene expression from an ERE-LUC reporter gene at concentrations of 10−6 M and 10−5 M but only in the clones overexpressing ERβ and not in those overexpressing ERα. Clone 10A-ERβ12 also yielded growth stimulation with 10-6 M genistein. Finally, the overexpression of ERα, but not ERβ, gave rise to increased growth in semi-solid methocel suspension culture in the presence of 70 nM oestradiol, suggesting that overexpression of ERα, but not ERβ, produces characteristics of a transformed phenotype. Conclusions: This provides a model system to compare effects of oestradiol with other oestrogenic ligands in cells stably overexpressing individually ERα or ERβ.