4 resultados para brain cancer
em CentAUR: Central Archive University of Reading - UK
Resumo:
Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.
Resumo:
As the mean age of the global population increases, breast cancer in older individuals will be increasingly encountered in clinical practice. Management decisions should not be based on age alone. Establishing recommendations for management of older individuals with breast cancer is challenging because of very limited level 1 evidence in this heterogeneous population. In 2007, the International Society of Geriatric Oncology (SIOG) created a task force to provide evidence-based recommendations for the management of breast cancer in elderly individuals. In 2010, a multidisciplinary SIOG and European Society of Breast Cancer Specialists (EUSOMA) task force gathered to expand and update the 2007 recommendations. The recommendations were expanded to include geriatric assessment, competing causes of mortality, ductal carcinoma in situ, drug safety and compliance, patient preferences, barriers to treatment, and male breast cancer. Recommendations were updated for screening, primary endocrine therapy, surgery, radiotherapy, neoadjuvant and adjuvant systemic therapy, and metastatic breast cancer.
Resumo:
Age is a risk factor for dementia, and also for most cancers. Surprisingly, rates of cancer appear to be lower in individuals with dementia and vice versa. Genetic mechanisms could underpin this inverse relationship and are outlined, but underdiagnosis must also be taken into account. Individuals with cancer and dementia pose unique challenges to healthcare professionals owing to the potential for impaired decision-making capacity, poor communication and difficulties following medication regimes. Mild cognitive impairment and ‘chemo brain’ should be differentiated from progressive neurodegeneration.
Resumo:
Several recent reports suggest that inflammatory signals play a decisive role in the self-renewal, migration and differentiation of multipotent neural stem cells (NSCs). NSCs are believed to be able to ameliorate the symptoms of several brain pathologies through proliferation, migration into the area of the lesion and either differentiation into the appropriate cell type or secretion of anti-inflammatory cytokines. Although NSCs have beneficial roles, current evidence indicates that brain tumours, such as astrogliomas or ependymomas are also caused by tumour-initiating cells with stem-like properties. However, little is known about the cellular and molecular processes potentially generating tumours from NSCs. Most pro-inflammatory conditions are considered to activate the transcription factor NF-kappaB in various cell types. Strong inductive effects of NF-kappaB on proliferation and migration of NSCs have been described. Moreover, NF-kappaB is constitutively active in most tumour cells described so far. Chronic inflammation is also known to initiate cancer. Thus, NF-kappaB might provide a novel mechanistic link between chronic inflammation, stem cells and cancer. This review discusses the apparently ambivalent role of NF-kappaB: physiological maintenance and repair of the brain via NSCs, and a potential role in tumour initiation. Furthermore, it reveals a possible mechanism of brain tumour formation based on inflammation and NF-kappaB activity in NSCs.