55 resultados para brain, computer, interface
em CentAUR: Central Archive University of Reading - UK
Resumo:
The paper describes the implementation of an offline, low-cost Brain Computer Interface (BCI) alternative to more expensive commercial models. Using inexpensive general purpose clinical EEG acquisition hardware (Truscan32, Deymed Diagnostic) as the base unit, a synchronisation module was constructed to allow the EEG hardware to be operated precisely in time to allow for recording of automatically time stamped EEG signals. The synchronising module allows the EEG recordings to be aligned in stimulus time locked fashion for further processing by the classifier to establish the class of the stimulus, sample by sample. This allows for the acquisition of signals from the subject’s brain for the goal oriented BCI application based on the oddball paradigm. An appropriate graphical user interface (GUI) was constructed and implemented as the method to elicit the required responses (in this case Event Related Potentials or ERPs) from the subject.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Brain-Computer Interfacing (BCI) has been previously demonstrated to restore patient communication, meeting with varying degrees of success. Due to the nature of the equipment traditionally used in BCI experimentation (the electroencephalograph) it is mostly conned to clinical and research environments. The required medical safety standards, subsequent cost of equipment and its application/training times are all issues that need to be resolved if BCIs are to be taken out of the lab/clinic and delivered to the home market. The results in this paper demonstrate a system developed with a low cost medical grade EEG amplier unit in conjunction with the open source BCI2000 software suite thus constructing the cheapest per electrode system available, meeting rigorous clinical safety standards. Discussion of the future of this technology and future work concerning this platform are also introduced.
Resumo:
We are sympathetic with Bentley et al’s attempt to encompass the wisdom of crowds in a generative model, but posit that success at using Big Data will include more sensitive measurements, more and more varied sources of information, as well as build from the indirect information available through technology, from ancillary technical features to data from brain-computer interface.
Resumo:
OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.
Resumo:
OBJECTIVE: Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. APPROACH: Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. MAIN RESULTS: The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be reduced significantly (p < 0.05) by using the facial expression change patterns in comparison with the face pattern. The offline results show that the classification accuracy of the facial expression change pattern was significantly better than that of the shuffled pattern (p < 0.05) and the face pattern (p < 0.05). SIGNIFICANCE: The facial expression change pattern presented in this paper reduced interference from adjacent stimuli and decreased the fatigue and annoyance experienced by BCI users significantly (p < 0.05) compared to the face pattern.
Resumo:
Abstract. Different types of mental activity are utilised as an input in Brain-Computer Interface (BCI) systems. One such activity type is based on Event-Related Potentials (ERPs). The characteristics of ERPs are not visible in single-trials, thus averaging over a number of trials is necessary before the signals become usable. An improvement in ERP-based BCI operation and system usability could be obtained if the use of single-trial ERP data was possible. The method of Independent Component Analysis (ICA) can be utilised to separate single-trial recordings of ERP data into components that correspond to ERP characteristics, background electroencephalogram (EEG) activity and other components with non- cerebral origin. Choice of specific components and their use to reconstruct “denoised” single-trial data could improve the signal quality, thus allowing the successful use of single-trial data without the need for averaging. This paper assesses single-trial ERP signals reconstructed using a selection of estimated components from the application of ICA on the raw ERP data. Signal improvement is measured using Contrast-To-Noise measures. It was found that such analysis improves the signal quality in all single-trials.
Resumo:
A Brain-computer music interface (BCMI) is developed to allow for continuous modification of the tempo of dynamically generated music. Six out of seven participants are able to control the BCMI at significant accuracies and their performance is observed to increase over time.
Resumo:
A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing. The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g. electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged auto-mutual information clustering (LAMIC) and Fully automated statistical thresholding (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts.
Resumo:
Practical realisation of Cyborgs opens up significant new opportunities in many fields. In particular when it comes to space travel many of the limitations faced by humans, in stand-alone form, are transposed by the adoption of a cyborg persona. In this article a look is taken at different types of Brain-Computer interface which can be employed to realise Cyborgs, biology-technology hybrids. e approach taken is a practical one with applications in mind, although some wider implications are also considered. In particular results from experiments are discussed in terms of their meaning and application possibilities. e article is written from the perspective of scientific experimentation opening up realistic possibilities to be faced in the future rather than giving conclusive comments on the technologies employed. Human implantation and the merger of biology and technology are though important elements.
Resumo:
Background Event-related desynchronization/synchronization (ERD/ERS) is a relative power decrease/increase of electroencephalogram (EEG) in a specific frequency band during physical motor execution and mental motor imagery, thus it is widely used for the brain-computer interface (BCI) purpose. However what the ERD really reflects and its frequency band specific role have not been agreed and are under investigation. Understanding the underlying mechanism which causes a significant ERD would be crucial to improve the reliability of the ERD-based BCI. We systematically investigated the relationship between conditions of actual repetitive hand movements and resulting ERD. Methods Eleven healthy young participants were asked to close/open their right hand repetitively at three different speeds (Hold, 1/3 Hz, and 1 Hz) and four distinct motor loads (0, 2, 10, and 15 kgf). In each condition, participants repeated 20 experimental trials, each of which consisted of rest (8–10 s), preparation (1 s) and task (6 s) periods. Under the Hold condition, participants were instructed to keep clenching their hand (i.e., isometric contraction) during the task period. Throughout the experiment, EEG signals were recorded from left and right motor areas for offline data analysis. We obtained time courses of EEG power spectrum to discuss the modulation of mu and beta-ERD/ERS due to the task conditions. Results We confirmed salient mu-ERD (8–13 Hz) and slightly weak beta-ERD (14–30 Hz) on both hemispheres during repetitive hand grasping movements. According to a 3 × 4 ANOVA (speed × motor load), both mu and beta-ERD during the task period were significantly weakened under the Hold condition, whereas no significant difference in the kinetics levels and interaction effect was observed. Conclusions This study investigates the effect of changes in kinematics and kinetics on resulting ERD during repetitive hand grasping movements. The experimental results suggest that the strength of ERD may reflect the time differentiation of hand postures in motor planning process or the variation of proprioception resulting from hand movements, rather than the motor command generated in the down stream, which recruits a group of motor neurons.
Resumo:
Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.