8 resultados para bivalve molluscs
em CentAUR: Central Archive University of Reading - UK
Resumo:
The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.
Resumo:
The Ramsar site of Lake Uluabat, western Turkey, suffers from eutrophication, urban and industrial pollution and water abstraction, and its water levels are managed artificially. Here we combine monitoring and palaeolimnological. techniques to investigate spatial and temporal limnological variability and ecosystem impact, using an ostracod and mollusc survey to strengthen interpretation of the fossil record. A combination of low invertebrate Biological Monitoring Working Party scores (<10) and the dominance of eutrophic diatoms in the modern lake confirms its poor ecological status. Palaeolimnological analysis of recent (last >200 yr) changes in organic and carbonate content, diatoms, stable isotopes, ostracods and molluscs in a lake sediment core (UL20A) indicates a 20th century trend towards increased sediment accumulation rates and eutrophication which was probably initiated by deforestation and agriculture. The most marked ecological shift occurs in the early 1960s, however. A subtle rise in diatom-inferred total phosphorus and an inferred reduction in submerged aquatic macrophyte cover accompanies a major increase in sediment accumulation rate. An associated marked shift in ostracod stable isotope data indicative of reduced seasonality and a change in hydrological input suggests major impact from artificial water management practices, all of which appears to have culminated in the sustained loss of submerged macrophytes since 2000. The study indicates it is vital to take both land-use and water management practices into account in devising restoration strategies. in a wider context, the results have important implications for the conservation of shallow karstic lakes, the functioning of which is still poorly understood. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new molecular phylogeny of the limpet molluscs (Calyptraeidae) reveals that coiled shells have independently re-evolved at least once in this family, which is a violation of Dollo's Law that complex ancestral states, once lost, are never reacquired. Reacquisition of the coiled ancestral state is remarkable in that uncoiled shells have been the most recent ancestral state for 20 million-100 million years. Adult coiling might have reevolved by the mechanism of prolonging the period during which genes for coiling are expressed in larvae. This and other developmental mechanisms could provide general routes for maintaining the potential to produce traits lost in distant ancestors.
Resumo:
Submarine cliffs are typically crowded with sessile organisms, most of which are ultimately exported downwards. Here we report a 24 month study of benthic fauna dropping from such cliffs at sites of differing cliff angle and flow rates at Lough Hyne Marine Nature Reserve, Co. Cork, Ireland. The magnitude of 'fall out' material collected in capture nets was highly seasonal and composed of sessile and mobile elements. Sponges, ascidians, cnidarians, polychaetes, bryozoans and barnacles dominated the sessile forms. The remainder (mobile fauna) were scavengers and predators such as asteroid echinoderms, gastropod molluscs and malacostracan crustaceans. These were probably migrants targeting fallen sessile organisms. 'Fall out' material (including mobile forms) increased between May and August in both years. This increase in 'fall out' material was correlated with wrasse abundance at the cliffs (with a one month lag period). The activities of the wrasse on the cliffs (feeding, nest building and territory defence) were considered responsible for the majority of 'fall out' material, with natural mortality and the activity of other large mobile organisms (e.g. crustaceans) also being triplicated. Current flow rate and cliff profile were important in amount of 'fall out' material collected. In low current situations export of fallen material was vertical, while both horizontal and vertical export was associated with moderate to high current environments. Higher 'fall out' was associated with overhanging than vertical cliff surfaces. The 'fall out' of marine organisms in low current situations is likely to provide ail important source of nutrition in close proximity to the cliff, in an otherwise impoverished soft sediment habitat. However, in high current areas material will be exported some distance from the source, with final settlement again occurring in soft sediment habitats (as current speed decreases).
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.
Resumo:
FoxC, FoxF, FoxL1 and FoxQ1 genes have been shown to be clustered in some animal genomes, with mesendodermal expression hypothesised as a selective force maintaining cluster integrity. Hypotheses are, however, constrained by a lack of data from the Lophotrochozoa. Here we characterise members of the FoxC, FoxF, FoxL1 and FoxQ1 families from the annelid Capitella teleta and the molluscs Lottia gigantea and Patella vulgata. We cloned FoxC, FoxF, FoxL1 and FoxQ1 genes from C. teleta, and FoxC, FoxF and FoxL1 genes from P. vulgata, and established their expression during development. We also examined their genomic organisation in C. teleta and L. gigantea, and investigated local syntenic relationships. Our results show mesodermal and anterior gut expression is a common feature of these genes in lophotrochozoans. In L. gigantea FoxC, FoxF and FoxL1 are closely linked, while in C. teleta Ct-foxC and Ct-foxL1 are closely linked, with Ct-foxF and Ct-foxQ1 on different scaffolds. Adjacent to these genes there is limited evidence of local synteny. This demonstrates conservation of genomic organisation and expression of these genes can be traced in all three bilaterian Superphyla. These data are evaluated against competing theories for the long-term maintenance of gene clusters.
Resumo:
This release of the Catalogue of Life contains contributions from 132 databases with information on 1,352,112 species, 114,069 infraspecific taxa and also includes 928,147 synonyms and 408,689 common names covering the following groups: Viruses • Viruses and Subviral agents from ICTV_MSL UPDATED! Bacteria and Archaea from BIOS Chromista • Chromistan fungi from Species Fungorum Protozoa • Major groups from ITIS Regional, • Ciliates from CilCat, • Polycystines from WoRMS Polycystina UPDATED!, • Protozoan fungi from Species Fungorum and Trichomycetes database • Slime moulds from Nomen.eumycetozoa.com Fungi • Various taxa in whole or in part from CABI Bioservices databases (Species Fungorum, Phyllachorales, Rhytismatales, Saccharomycetes and Zygomycetes databases) and from three other databases covering Xylariaceae, Glomeromycota, Trichomycetes, Dothideomycetes • Lichens from LIAS UPDATED! Plantae (Plants) • Mosses from MOST • Liverworts and hornworts from ELPT • Conifers from Conifer Database • Cycads and 6 flowering plant families from IOPI-GPC, and 99 families from WCSP • Plus individual flowering plants families from AnnonBase, Brassicaceae, ChenoBase, Droseraceae Database, EbenaBase, GCC UPDATED!, ILDIS UPDATED!, LecyPages, LHD, MELnet UPDATED!, RJB Geranium, Solanaceae Source, Umbellifers. Animalia (Animals) • Marine groups from URMO, ITIS Global, Hexacorals, ETI WBD (Euphausiacea), WoRMS: WoRMS Asteroidea UPDATED!, WoRMS Bochusacea UPDATED!, WoRMS Brachiopoda UPDATED!, WoRMS Brachypoda UPDATED!, WoRMS Brachyura UPDATED!, WoRMS Bryozoa UPDATED!, WoRMS Cestoda NEW!, WoRMS Chaetognatha UPDATED!, WoRMS Cumacea UPDATED!, WoRMS Echinoidea UPDATED!, WoRMS Gastrotricha NEW!, WoRMS Gnathostomulida NEW!, WoRMS Holothuroidea UPDATED!, WoRMS Hydrozoa UPDATED!, WoRMS Isopoda UPDATED!, WoRMS Leptostraca UPDATED!, WoRMS Monogenea NEW!, WoRMS Mystacocarida UPDATED!, WoRMS Myxozoa NEW!, WoRMS Nemertea UPDATED!, WoRMS Oligochaeta UPDATED!, WoRMS Ophiuroidea UPDATED!, WoRMS Phoronida UPDATED!, WoRMS Placozoa NEW!, WoRMS Polychaeta UPDATED!, WoRMS Polycystina UPDATED!, WoRMS Porifera UPDATED!, WoRMS Priapulida NEW!, WoRMS Proseriata and Kalyptorhynchia UPDATED!, WoRMS Remipedia UPDATED!, WoRMS Scaphopoda UPDATED!, WoRMS Tanaidacea UPDATED!, WoRMS Tantulocarida UPDATED!, WoRMS Thermosbaenacea UPDATED!, WoRMS Trematoda NEW!, WoRMS Xenoturbellida UPDATED! • Rotifers, mayflies, freshwater hairworms, planarians from FADA databases: FADA Rotifera UPDATED!, FADA Ephemeroptera NEW!, FADA Nematomorpha NEW! & FADA Turbellaria NEW! • Entoprocts, water bears from ITIS Global • Spiders, scorpions, ticks & mites from SpidCat via ITIS UPDATED!, SalticidDB , ITIS Global, TicksBase, SpmWeb BdelloideaBase UPDATED! & Mites GSDs: OlogamasidBase, PhytoseiidBase, RhodacaridBase & TenuipalpidBase • Diplopods, centipedes, pauropods and symphylans from SysMyr UPDATED! & ChiloBase • Dragonflies and damselflies from Odonata database • Stoneflies from PlecopteraSF UPDATED! • Cockroaches from BlattodeaSF UPDATED! • Praying mantids from MantodeaSF UPDATED! • Stick and leaf insects from PhasmidaSF UPDATED! • Grasshoppers, locusts, katydids and crickets from OrthopteraSF UPDATED! • Webspinners from EmbiopteraSF UPDATED! • Bark & parasitic lices from PsocodeaSF NEW! • Some groups of true bugs from ScaleNet, FLOW, COOL, Psyllist, AphidSF UPDATED! , MBB, 3i Cicadellinae, 3i Typhlocybinae, MOWD & CoreoideaSF NEW!• Twisted-wing parasites from Strepsiptera Database UPDATED! • Lacewings, antlions, owlflies, fishflies, dobsonflies & snakeflies from LDL Neuropterida • Some beetle groups from the Scarabs UPDATED!, TITAN, WTaxa & ITIS Global • Fleas from Parhost • Flies, mosquitoes, bots, midges and gnats from Systema Dipterorum, CCW & CIPA • Butterflies and moths from LepIndex UPDATED!, GloBIS (GART) UPDATED!, Tineidae NHM, World Gracillariidae • Bees & wasps from ITIS Bees, Taxapad Ichneumonoidea, UCD, ZOBODAT Vespoidea & HymIS Rhopalosomatidae NEW!• Molluscs from WoRMS Mollusca NEW!, FADA Bivalvia NEW!, MolluscaFW NEW! & AFD (Pulmonata) • Fishes from FishBase UPDATED! • Reptiles from TIGR Reptiles • Amphibians, birds and mammals from ITIS Global PLUS additional species of many groups from ITIS Regional, NZIB and CoL China NEW!
Resumo:
Background and Aims Despite recent recognition that (1) plant–herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. Methods Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. Key Results Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). Conclusions Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.