3 resultados para biotinylation
em CentAUR: Central Archive University of Reading - UK
Resumo:
The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS
Resumo:
The thiol isomerase enzymes protein disulphide isomerase (PDI) and endoplasmic reticulum protein 5 (ERp5) are released by resting and activated platelets. These re-associate with the cell surface where they modulate a range of platelet responses including adhesion, secretion and aggregation. Recent studies suggest the existence of yet uncharacterised platelet thiol isomerase proteins. This study aimed to identify which other thiol isomerase enzymes are present in human platelets. Through the use of immunoblotting, flow cytometry, cell-surface biotinylation and gene array analysis, we report the presence of five additional thiol isomerases in human and mouse platelets and megakaryocytes, namely; ERp57, ERp72, ERp44, ERp29 and TMX3. ERp72, ERp57, ERp44 and ERp29 are released by platelets and relocate to the cell surface following platelet activation. The transmembrane thiol isomerase TMX3 was also detected on the platelet surface but does not increase following activation. Extracellular PDI is also implicated in the regulation of coagulation by the modulation of tissue factor activity. ERp57 was identified within platelet-derived microparticle fractions, suggesting that ERp57 may also be involved in the regulation of coagulation as well as platelet function. These data collectively implicate the expanding family of platelet-surface thiol isomerases in the regulation of haemostasis.
Resumo:
Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.