21 resultados para biocontrol

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of a formulated product containing spores of the naturally occurring fungus Paecilomyces lilacinus, strain 251, was evaluated against root-knot nematodes in pot and greenhouse experiments. Decrease of second-stage juveniles hatching from eggs was recorded by using the bio-nematicide at a dose of 4 kg ha(-1), while a further decrease was recorded by doubling the dose. However, the mortality rate decreased by increasing the inoculum level. Application of P. lilacinus and Bacillus firmus, singly or together in pot experiments, provided effective control of second-stage juveniles, eggs or egg masses of root-knot nematodes. In a greenhouse experiment, the bio-nematicide was evaluated for its potential to control root-knot nematodes either as a stand-alone method or in combination with soil solarization. Soil was solarized for 15 d and the bio-nematicide was applied just after the removal of the plastic sheet. Soil solarization for 15 d either alone or combined with the use of P. lilacinus did not provide satisfactory control of root-knot nematodes. The use of oxamyl, which was applied 2 weeks before and during transplanting, gave results similar to the commercial product containing P. lilacinus but superior to soil solarization. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A RAPD-PCR assay was developed and used to test For competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (1) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This Suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils; free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S ill PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A RAPD-PCR assay was developed and used to test For competitive variability in growth of the nematode biological control fungus Pochonia chlamydosporia. Saprophytic competence in soil with or without tomato plants was examined in three isolates of the fungus: RES 280 (J), originally isolated from potato cyst nematode (PCN) cysts; RES 200 (1) and RES 279 (S), both originally isolated from root knot nematode (RKN) eggs. Viable counts taken at 70 d indicated that I was the best saprophyte followed by S, with J the poorest. RAPD-PCR analysis of colonies from mixed treatments revealed that there was a cumulative effect of adding isolates to the system. This Suggested that the isolates did not interact and that they may occupy separate niches in soil and the rhizosphere. To investigate parasitic ability, soils were seeded with two isolates of the fungus: J and S, singly or in combination. Tomato or potato plants were grown in these soils; free of nematodes, or inoculated with PCN or RKN, and incubated for 77 d. The abundance of the PCN isolate J in PCN cysts was significantly greater than that of the RKN isolate S but in RKN egg masses, S was significantly more abundant than J. RAPD-PCR analysis of colonies from mixed treatments confirmed that J was more abundant than S ill PCN cysts whereas the converse was observed on RKN egg masses. This substantiates the phenomenon of nematode host preference at the infraspecific level of P. chlamydosporia and highlights its relevance for biological control of plant parasitic nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a glasshouse experiment using potted strawberry plants (cv. Cambridge Favourite) as hosts, the effect of selected fungal antagonists grown on 25 or 50 g of mushroom compost containing autoclaved mycelia of Agaricus bisporus, or wheat bran was evaluated against Armillaria mellea. Another glasshouse experiment tested the effect of application time of the antagonists in relation to inoculations with the pathogen. A significant interaction was found between the antagonists, substrates and dose rates. All the plants treated with Chaetomium olivaceum isolate Co on 50 g wheat bran survived until the end of the experiment which lasted 482 days, while none of them survived when this antagonist was added to the roots of the plants on 25 g wheat bran or 25 or 50 g mushroom compost. Dactylium dendroides isolate SP had a similar effect, although with a lower host survival rate of 33.3%. Trichoderma hamatum isolate Tham 1 and T. harzianum isolate Th23 protected 33.3% of the plants when added on 50 g and none when added on 25 g of either substrate, while 66.7% of the plants treated with T. harzianum isolate Th2 on 25 g, or T viride isolate TO on 50 g wheat bran, survived. Application of the antagonists on mushroom compost initially resulted in development of more leaves and healthier plants, but this effect was not sustained. Eventually, plants treated with the antagonists on wheat bran had significantly more leaves and higher health scores. The plants treated with isolate Th2 and inoculated with Armillaria at the same time had a survival rate of 66.7% for the duration of the experiment (475 days), while none of them survived that long when the antagonist and pathogen were applied with an interval of 85 days in either sequence. C. olivaceum isolate Co showed a protective effect only, as 66.7% of the plants survived when they were treated with the antagonist 85 days before inoculation with the pathogen, while none of them survived when the antagonist and pathogen were applied together or the infection preceded protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several in vitro and in vivo experiments were conducted to develop an effective technique for culturing potential fungal antagonists (isolates of Trichoderma harzianum, Dactylium dendroides, Chaetomium olivaceum and one unidentified fungus) selected for activity against Armillaria mellea. The antagonists were inoculated onto (1) live spawn of the oyster mu shroom (Pleurotus ostreatus), (2) extra-moistened or sucrose-enriched mushroom composts containing living or autoclaved mycelia of P. ostreatus or Agaricus bisporus (button mushroom), (3) pasteurized compost with or without A. bisporus mycelium, wheat bran, wheat germ and (4) spent mushroom composts with living mycelia of A. bisporus, P. ostreatus or Lentinus edodes (the Shiitake mushroom). In one experiment, a representative antagonist (isolate Th2 of T. harzianum) was grown together with the A. bisporus mycelium, while in another one, the antagonist was first grown on wheat germ or wheat bran and then on mushroom compost with living mycelium of A. bisporus. Some of the carrier substrates were then added to the roots of potted strawberry plants in the glasshouse to evaluate their effectiveness against the disease. The antagonists failed to grow on the spawn of P. ostreatus even after reinoculations and prolonged incubation. Providing extra moisture or sucrose enrichment also did not improve the growth of Th2 on mushroom composts in the presence of living mycelia of A. bisporus or P. ostreatus. The antagonist, however, grew rapidly and extensively on mushroom compost with autoclaved mycelia, and also on wheat germ and wheat bran. Colonization of the substrates by the antagonist was positively correlated with its effectiveness in the glasshouse studies. Whereas only 33.3% of the inoculated control plants survived in one experiment monitored for 560 days, 100% survival was achieved when Th2 was applied on wheat germ or wheat bran. Growth of the antagonist alone on pasteurized or sterilized compost (without A. bisporus mycelia) and simultaneous growth of the antagonist and mushroom on pasteurized compost did not improve survival over the inoculated controls, but growth over mushroom compost with the living mycelium resulted in 50% survival rate. C. olivaceum isolate Co was the most effective, resulting in overall survival rate of 83.3% compared with only 8.3% for the inoculated and 100% for the uninoculated (healthy) controls. This antagonist gave the highest survival rate of 100% on spent mushroom compost with L. edodes. T harzianum isolate Th23, with 75% survival rate, was the most effective on spent mushroom compost with P. ostreatus, while D. dendroides isolate SP resulted in equal survival rates of 50% on all the three mushroom composts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different formulations of Bacillus subtilis were prepared using standard laboratory protocols. Bacillus subtilis survived in glucose and talc powders at 8.6 and 7.8 log(10) CFU/g, respectively, for 1 year of storage at room temperature compared with 3.5 log(10) CFU/g on a peat formulation. Glasshouse experiments using soil and seed treatments were conducted to test the efficacy of B. subtilis for protecting lentil against the wilt disease caused by Fusariumoxysporum f. sp. lentis. Seed treatments with formulations of B. subtilis on glucose, talc and peat significantly enhanced its biocontrol activity against Fusarium compared with a treatment in which spores were applied directly to seed. The formulations decreased disease severity by reducing colonization of plants by the pathogen, promoting their growth and increased the dry weight of lentil plants. Of these treatments the glucose and talc-based powder formulations were more effective than the peat formulation and the spore application without a carrier. It was shown that the B. subtilis spores applied with glucose were viable for longer than those applied with other carriers. Seed treatment with these formulated spores is an effective delivery system that can provide a conducive environment for B. subtilis to suppress vascular wilt disease on lentil and has the potential for utilization in commercial field application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invasion and infectivity of Meloidogyne javanica juveniles (J2) encumbered with spore of Pasteuria Penetrans were influenced by the temperature and the time J2 were in the soil before exposure to roots. The percentage of infected females decreased as the time juveniles spent in soil increased. When spore encumbered J2 were maintained at 30 degrees C the decrease in infection was greater than that at 18 degrees C. The thermal time requirements and the base temperature for P. penetrans development were estimated. The rate of development followed an exponential curve between 21 and 36 degrees C and the base temperature for development was estimated by extrapolation to be 18.5 degrees C. The effect of integrating a nematode resistant tomato cultivar with the biocontrol agent P. penetrans also was investigated. The ability of the biocontrol agent to reduce numbers of root-knot nematodes was dependent on the densities of the nematode and P. penetrans spores in the soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entomopathogenic bacterial strains Pseudomonas (Flavimonas) oryzihabitans and Xenorhabdus nematophilus, both bacterial symbionts of the entomopathogenic nematodes Steinernema abbasi and S. carpocapsae have been recently used for suppression of soil-borne pathogens. Bacterial biocontrol agents (P. oryzihabitans and X nematophila) have been tested for production of secondary metabolites in vitro and their fungistatic effect,on mycelium and spore development of soil-borne pathogens. Isolates of Pythium spp. and Rhizoctonia solani, the causal agent of cotton damping-off, varied in sensitivity in vitro to the antibiotics phenazine-I-carboxylic acid (PCA), cyanide (HCN) and siderophores produced by bacterial strains shown previously to have potential for biological control of those pathogens. These findings affirm the role of the antibiotics PCA, HCN and siderophores in the biocontrol activity of these entomopathogenic strains and support earlier evidence that mechanisms of secondary metabolites are responsible for suppression of damping-off diseases. In the present studies colonies of R oryzihabitans showed production of PCA with presence of crystalline deposits after six days development and positive production where found as well in the siderophore's assay when X nematophila strain indicated HCN production in the in vitro assays. In vitro antifungal activity showed that bacteria densities of 101 to 10(6)cells/ml have antifungal activity in different media cultures. The results show further that isolates of Pythium spp. and R. solani insensitive to PCA, HCN and siderophores are present in the pathogen population and provide additional justification for the use of mixtures of entomopathogenic strains that employ different mechanisms of pathogen suppression to manage damping-off.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biocontrol agents such as Xeiwrhabduf, nemalophilci and X. nematophila ssp. bovienii and their cell-free protein toxin complexes were lethal to larvae of O. sulcatus when applied to potting compost in the absence of plants. Similarly, strawberry plants infected with 0. sulcaitfi larvae were protected from damage by applications of both cell suspensions of the bacteria and solutions of their cell-free toxic metabolites, indicating that it is the protein toxins, which are responsible for the lethal effects observed. These toxic metabolites were found more effective against 0. sulccitus larvae when treated in soil microflora. Insect mortality is increased by increasing temperature and bacterial concentration. The toxins remained pathogenic for several months when stored in potting soil either at 15 or 20°C, however, bacterial cells were not as persistent as the toxins. It is therefore suggested that these bacteria and their toxic metabolites can he applied in soil for insect pest control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cultural control methods may increase soil nitrogen levels and alter microclimate at soil level; this may be of benefit to biocontrol agents, although physical disturbance to the soil and plant damage may be detrimental. Some weeds escape control by these methods; we suggest that these weeds may be controlled by biocontrol agents. It will be easiest to combine biological control with. re and cutting in grasslands; within arable systems it would be most promising to combine biological control (especially using seed predators and foliar pathogens) with cover-cropping, and mechanical weeding combined with foliar bacterial and possibly foliar fungal pathogens. We stress the need to consider the timing of application of combined control methods in order to cause least damage to the biocontrol agent, along with maximum damage to the weed and to consider the wider implications of these different weed control methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root-knot nematodes (Meloidogyne spp.) are the most significant plant-parasitic nematodes that damage many crops all over the world. The free-living second stage juvenile (J2) is the infective stage that enters plants. The J2s move in the soil water films to reach the root zone. The bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes, is cosmopolitan, frequently encountered in many climates and environmental conditions and is considered promising for the control of Meloidogyne spp. The infection potential of P. penetrans to nematodes is well studied but not the attachment effects on the movement of root-knot nematode juveniles, image analysis techniques were used to characterize movement of individual juveniles with or without P. penetrans spores attached to their cuticles. Methods include the study of nematode locomotion based on (a) the centroid body point, (b) shape analysis and (c) image stack analysis. All methods proved that individual J2s without P. penetrans spores attached have a sinusoidal forward movement compared with those encumbered with spores. From these separate analytical studies of encumbered and unencumbered nematodes, it was possible to demonstrate how the presence of P. penetrans spores on a nematode body disrupted the normal movement of the nematode.