41 resultados para binding interaction
em CentAUR: Central Archive University of Reading - UK
Resumo:
The affinity of anthocyanins for human serum albumin (HSA) was determined by a fluorescence quenching method. The effects of pH and structure of anthocyanins on the binding constants were studied. The constants for binding of anthocyanins to HSA ranged from 1.08 x 10^5 M-1 to 13.16 x 10^5 M-1. A hydrophobic effect at acidic pH was shown by the relatively high positive entropy values under the conditions studied. Electrostatic interactions including hydrogen bonding contributed to the binding at pH 7.4. The effect of structure of anthocyanins on the affinity was pH dependent, particularly the effect of additional hydroxyl substituents. Hydroxyl substituents and glycosylation of anthocyanins decreased the affinity for binding to HSA at lower pH (especially pH 4), but increased the strength of binding at pH 7.4. In contrast, methylation of a hydroxyl group enhanced the binding at acidic pH, while this substitution reduced the strength of binding at pH 7.4. This paper has shown that changes in anthocyanin structure or reductions in pH, which may occur in the region of inflammatory sites, have an effect of the binding of anthocyanins to HSA.
Resumo:
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.
Resumo:
The interactions have been investigated of puroindoline-a (Pin-a) and mixed protein systems of Pin-a and wild-type puroindoline-b (Pin-b+) or puroindoline-b mutants (G46S mutation (Pin bH) or W44R mutation (Pin-bS)) with condensed phase monolayers of an anionic phospholipid (L-α-dipalmitoylphosphatidyl-dl-glycerol (DPPG)) at the air/water interface. The interactions of the mixed systems were studied at three different concentration ratios of Pin-a:Pin-b, namely 3:1, 1:1 and 1:3 in order to establish any synergism in relation to lipid binding properties. Surface pressure measurements revealed that Pin-a interaction with DPPG monolayers led to an equilibrium surface pressure increase of 8.7 ± 0.6 mN m-1. This was less than was measured for Pin-a:Pin-b+ (9.6 to 13.4 mN m-1), but was significantly more than was measured for Pin-a:Pin-bH (4.0 to 6.2 mN m-1) or Pin-a:Pin-bS (3.8 to 6.3 mN m-1) over the complete range of concentration ratio. Consequently, surface pressure increases were shown to correlate to endosperm hardness phenotype, with puroindolines present in hard-textured wheat varieties yielding lower equilibrium surface pressure changes. Integrated amide I peak areas from corresponding external reflectance Fourier-transform infrared (ER-FTIR) spectra, used to indicate levels of protein adsorption to the lipid monolayers, showed that differences in adsorbed amount were less significant. The data therefore suggest that Pin-b mutants having single residue substitutions within their tryptophan-rich loop that are expressed in some hard-textured wheat varieties influence the degree of penetration of Pin-a and Pin-b into anionic phospholipid films. These findings highlight the key role of the tryptophan-rich loop in puroindoline-lipid interactions.
Resumo:
External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m(-1), followed by Pin-bH (7.9 +/- 1.6 mN m(-1)) and Pin-bS (6.3 +/- 1.0 mN m(-1)), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m(-1)); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.
Resumo:
The interaction between four flavonoids (catechin, epicatechin, rutin and quercetin) and bovine serum albumin (BSA) was investigated using tryptophan fluorescence quenching. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between the flavonoids and BSA. The binding affinity was found to be strongest for quercetin, and ranked in the order quercetin>rutin>epicatechin=catechin. The pH in the range of 5 to 7.4 does not affect significantly (p<0.05) the association of rutin, epicatechin and catechin with BSA, but quercetin exhibited a stronger affinity at pH 7.4 than at lower pH (p<0.05). Quercetin has a total quenching effect on BSA tryptophan fluorescence at a molar ratio of 10:1 and rutin at approximately 25:1. However, epicatechin and catechin did not fully quench tryptophan fluorescence over the concentration range studied. Furthermore, the data suggested that the association between flavonoids and BSA did not change molecular conformation of BSA and that hydrogen bonding, ionic and hydrophobic interaction are equally important driving forces for protein-flavonoid association.
Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths
Resumo:
Binding parameters for the interactions of pentagalloyl glucose (PGG) and four hydrolyzable tannins (representing gallotannins and ellagitannins) with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction of PGG and isolated mixtures of tara gallotannins and of sumac gallotannins with gelatin and BSA were of the same order of magnitude for each tannin (in the range of 10(4)-10(5) M-1 for stronger binding sites when using a binding model consisting of two sets of multiple binding sites). In contrast, isolated mixtures of chestnut ellagitannins and of myrabolan ellagitannins exhibited 3-4 orders of magnitude greater equilibrium binding constants for the interaction with gelatin (similar to 2 x 10(6) M-1) than for that with BSA (similar to 8 x 10(2) M-1). Binding stoichiometries revealed that the stronger binding sites on gelatin outnumbered those on BSA by a ratio of at least similar to 2:1 for all of the hydrolyzable tannins studied. Overall, the data revealed that relative binding constants for the interactions with gelatin and BSA are dependent on the structural flexibility of the tannin molecule.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
P-glycoproteins (p-gps) are ubiquitous membrane proteins from the ABC (ATP-binding cassette) family. They have been found in many animals, bacteria, plants and fungi and are extremely important in regulating a wide range of xenobiotics including pesticides. P-gps have been linked to xenobiotic resistance, most famously in resistance to cancer drug treatments. Their wide substrate range has led to what is known as "multidrug resistance", where resistance developed to one type of xenobiotic gives resistance to a different classes of xenobiotic. P-gps are a major contributor to drug resistance in mammalian tumours and infections of protozoan parasites such as Plasmodium and Leishmania. There is a growing body of literature suggesting that p-gps, and other ABC proteins, are important in regulating pesticide toxicity and represent potential control failure through the development of pesticide resistance, in both agricultural and medical pests. At the same time, aspects of their biochemistry offer new hope in pest control, in particular in furthering our understanding of toxicity and offering insights into how we can improve control without recourse to new chemical discovery. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.
Resumo:
Background: The hepatitis C virus (HCV) non-structural 5A protein (NS5A) contains a highly conserved C-terminal polyproline motif with the consensus sequence Pro-X-X- Pro-X-Arg that is able to interact with the Src-homology 3 (SH3) domains of a variety of cellular proteins. Results: To understand this interaction in more detail we have expressed two N-terminally truncated forms of NS5A in E. coli and examined their interactions with the SH3 domain of the Src-family tyrosine kinase, Fyn. Surface plasmon resonance analysis revealed that NS5A binds to the Fyn SH3 domain with what can be considered a high affinity SH3 domain-ligand interaction (629 nM), and this binding did not require the presence of domain I of NS5A (amino acid residues 32-250). Mutagenic analysis of the Fyn SH3 domain demonstrated the requirement for an acidic cluster at the C-terminus of the RT-Src loop of the SH3 domain, as well as several highly conserved residues previously shown to participate in SH3 domain peptide binding. Conclusion: We conclude that the NS5A: Fyn SH3 domain interaction occurs via a canonical SH3 domain binding site and the high affinity of the interaction suggests that NS5A would be able to compete with cognate Fyn ligands within the infected cell.
Resumo:
Natural killer (NK) cell recognition of influenza virus-infected cells involves hemagglutinin (HA) binding to sialic acid (SA) on activating NK receptors. SA also acts as a receptor for the binding of influenza virus to its target host cells. The SA binding properties of H3N2 influenza viruses have been observed to change during circulation in humans: recent isolates are unable to agglutinate chicken red blood cells and show reduced affinity for synthetic glycopolymers representing SA-alpha-2,3-lactose (3'SL-PAA) and SA-alpha-2,6-N-acetyl lactosamine (6'SLN-PAA) carbohydrates. Here, NK lysis of cells infected with human H3N2 influenza viruses isolated between 1969 and 2003 was analyzed. Cells infected with recent isolates (1999 to 2003) were found to be lysed less effectively than cells infected with older isolates (1969 to 1996). This change occurred concurrently with the acquisition of two new potential glycosylation site motifs in RA. Deletion of the potential glycosylation site motif at 133 to 135 in HA1 from a recent isolate partially restored the agglutination phenotype to a recombinant virus, indicating that the HA-SA interaction is inhibited by the glycosylation modification. Deletion of either of the recently acquired potential glycosylation sites from HA led to increased NK lysis of cells infected with recombinant viruses carrying modified HA. These results indicate that alterations in RA glycosylation may affect NK cell recognition of influenza virus-infected cells in addition to virus binding to host cells.
Resumo:
Iron oxidation in the bacterial ferritin EcFtnA from Escherichia coli shows marked differences from its homologue human H-chain ferritin (HuHF). While the amino acid residues that constitute the dinuclear center in these proteins are highly conserved, EcFtnA has a third iron-binding site (C site) in close proximity to the dinuclear center that is seemingly responsible for these differences. Here, we describe the first thermodynamic study of Fe2+ binding to EcFtnA and its variants to determine the location of the primary ferrous ion-binding sites on the protein and to better understand the role of the third C site in iron binding. Isothermal titration calorimetric analyses of the wild-type protein reveal the presence of two main classes of binding sites in the pH range of 6.5-7.5, ascribed to Fe2+ binding, first at the A and then the B sites. Site-directed mutagenesis of ligands in the A, B, or C sites affects the apparent Fe2+-binding stoichiometries at the unaltered sites. The data imply some degree of inter- and intrasubunit negative cooperative interaction between sites. Unlike HuHF where only the A site initially binds Fe2+, both A and B sites in EcFtnA bind Fe2+, implying a role for the C site in influencing the binding of Fe2+ at the B site of the di-iron center of EcFtnA. The ITC equations describing a binding model for three classes of independent binding sites are reported here for the first time.
Resumo:
Unlike other positive-stranded RNA viruses that use either a 5'-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 50 end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF4E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF4E by 4E-BP1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF4E and the cap structure or 4E-BP1, suggesting that VPg binds to eIF4E at a different site from both cap and 4E-BP1. This work lends support to the idea that calicivirus VPg acts as a novel 'cap substitute' during initiation of translation on virus mRNA.
Resumo:
The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C-4-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C-4-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the PASc domain, three different fragments of DcuS were overproduced and examined: they were PASc-kinase, PASc, and kinase. The two kinase-domain-containing fragments were autophosphorylated by [gamma-P-32]ATP. The rate was not affected by fumarate or succinate, supporting the role of the PASp domain in C-4-dicarboxylate sensing. Both of the phosphorylated DcuS constructs were able to rapidly pass their phosphoryl groups to DcuR, and after phosphorylation, DcuR dephosphorylated rapidly. No prosthetic group or significant quantity of metal was found associated with either of the PASc-containing proteins. The DNA-binding specificity of DcuR was studied by use of the pure protein. It was found to be converted from a monomer to a dimer upon acetylphosphate treatment, and native polyacrylamide gel electrophoresis suggested that it can oligomerize. DcuR specifically bound to the promoters of the three known DcuSR-regulated genes (dctA, dcuB, and frdA), with apparent K(D)s of 6 to 32 muM for untreated DcuR and less than or equal to1 to 2 muM for the acetylphosphate-treated form. The binding sites were located by DNase I footprinting, allowing a putative DcuR-binding motif [tandemly repeated (T/A)(A/T)(T/C)(A/T)AA sequences] to be identified. The DcuR-binding sites of the dcuB, dctA, and frdA genes were located 27, 94, and 86 bp, respectively, upstream of the corresponding +1 sites, and a new promoter was identified for dcuB that responds to DcuR.