10 resultados para beta-carotene ketolase
em CentAUR: Central Archive University of Reading - UK
Resumo:
The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC. TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.
Resumo:
Objective: To determine whether consumption of five portions of fruit and vegetables per day reduces the enhancement of oxidative stress induced by consumption of fish oil. Subjects: A total of 18 free-living healthy smoking volunteers, aged 18-63 y, were recruited by posters and e-mail in The University of Reading, and by leaflets in local shops. Design: A prospective study. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Intervention: All subjects consumed a daily supplement of 4 x 1 g fish oil capsules for 9 weeks. After 3 weeks, they consumed an additional five portions of fruits and vegetables per day, and then they returned to their normal diet for the last 3 weeks of the study. Fasting blood samples were taken at the ends of weeks 0, 3, 6 and 9. Results: The plasma concentrations of ascorbic acid, lutein, beta-cryptoxanthin, alpha-carotene and beta-carotene all significantly increased when fruit and vegetable intake was enhanced (P<0.05). Plasma concentrations of α-tocopherol, retinol and uric acid did not change significantly during the period of increased fruit and vegetable consumption. Plasma oxidative stability, assessed by the oxygen radical absorbance capacity (ORAC) assay, also increased from weeks 3-6 (P<0.001) but not in association with increases in measured antioxidants. Lag phase before oxidation of low-density lipoprotein (LDL) significantly decreased in the first 3 weeks of the study, reflecting the incorporation of EPA and DHA into LDL (P<0.0001). Subsequent enhanced fruit and vegetable consumption significantly reduced the susceptibility of LDL to oxidation (P<0.005). Conclusion: Fish oil reduced the oxidative stability of plasma and LDL, but the effects were partially offset by the increased consumption of fruit and vegetables.
Resumo:
The effects of mixtures of antioxidants on the oxidation of phospholipids have been investigated in large unilamellar liposomes following initiation by 2,2'-azobis(2-aminopropane) dihydrochloride. The lag phase increased linearly with antioxidant concentration. The lag phases of mixtures containing alpha-tocopherol with ascorbic acid showed synergy between the antioxidants, but mixtures of beta-carotene with cc-tocopherol or ascorbic acid were not synergistic. The liposome system was used to investigate the total antioxidant activity of lipid- and water-soluble extracts from 16 samples of fruits, vegetables, and related food products. The water-soluble extracts caused greater increases in lag phase than the lipid-soluble extracts. The lag phase of liposomes containing the water-soluble extracts from fruits and vegetables increased linearly with the total phenolic concentration, with the continental salad extract having the longest lag phase. The lipid-soluble extract from apples caused the largest increase in lag phase of the lipid-soluble extracts. The lag phases of the lipid-soluble and water-soluble extracts of all fruits and vegetables studied were additive, but no synergy was detected. The lag phase of the liposomes containing both the water-soluble and lipid-soluble extracts varied from 611.5 min for the continental salad extracts to 47.5 min for the cauliflower extracts.
Resumo:
This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P < 0.01) and decreased the plasma homocysteine concentration by 8.8% (P < 0.01). The reduction in plasma homocysteine correlated weakly with the increase in dietary folate during the test intervention (r = -0.35, P = 0.04). The plasma antioxidant status and markers of oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.
Resumo:
The antioxidant effects of beta-carotene, oil-soluble (bixin) and water-soluble (norbixin) annatto preparations and mixtures of these carotenoids with virgin olive oil polar extract were assessed in bulk olive oil and oil-in-water emulsions stored at 60degreesC. Norbixin was the only carotenoid that inhibited the oxidative deterioration of lipids in both systems. Though bixin and beta-carotene did not retard autoxidation, their mixtures with the polar extract from virgin olive oil enhanced the antioxidant effect of the olive oil extract. Norbixin (2 mM) was of similar activity to delta-tocopherol (0.1 mM) in stored oil. The combination of norbixin with ascorbic acid or ascorbyl palmitate in oil showed a reduction in formation of volatile oxidation products but not in peroxide value, compared with the analogous sample lacking norbixin. In olive oil-in-water emulsions, norbixin (2 mM) reduced hydroperoxide formation to a similar extent as delta-tocopherol (0.1 mM), which in turn was a better antioxidant than alpha-tocopherol. A synergistic effect between norbixin and ascorbic acid or ascorbyl palmitate was observed in the emulsion systems. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. Design: A randomised double-blind crossover dietary intervention. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Subjects and intervention: A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. Results: The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P = 0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P = 0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta- Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P = 0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Conclusions: Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid mixture also enhanced the plasma triglyceride-lowering effect of the fish oil.
Resumo:
Background: Antioxidant status can be used as a biomarker to assess chronic disease risk and diet can modulate antioxidant defence. Objective: To examine effects of vegetarian diet and variations in the habitual intakes of foods and nutrients on blood antioxidants. Subjects and Setting: Thirty-one vegetarians (including six vegans) and 58 omnivores, non-smokers, in Northern Ireland. Design: A diet history method was used to assess habitual diet. Antioxidant vitamins, carotenoids, uric acid, zinc-and ferric-reducing ability of plasma (FRAP) were measured in fasting plasma and activities of glutathione peroxidase (GPX), superoxide dismutase ( SOD) and glutathione S-transferase (GST) and level of reduced glutathione (GSH) were measured in erythrocytes. Results: Vegetarians had approximately 15% higher levels of plasma carotenoids compared with omnivores, including lutein (P <= 0.05), a-cryptoxanthin (P <= 0.05), lycopene (NS), alpha-carotene (NS) and beta-carotene (NS). The levels/activities of all other antioxidants measured were similar between vegetarians and omnivores. Total intake of fruits, vegetables and fruit juices was positively associated with plasma levels of several carotenoids and vitamin C. Intake of vegetables was positively associated with plasma lutein, alpha-cryptoxanthin, alpha-carotene and beta-carotene, whereas intake of fruits was positively associated with plasma beta-cryptoxanthin. Intake of tea and wine was positively associated with FRAP value, whereas intake of herbal tea associated positively with plasma vitamin C. Intakes of meat and fish were positively associated with plasma uric acid and FRAP value. Conclusions: The overall antioxidant status was similar between vegetarians and omnivores. Good correlations were found between intakes of carotenoids and their respective status in blood.
Resumo:
Background: Cruciferous vegetable (CV) consumption is associated with a reduced risk of several cancers in epidemiologic studies. Objective: The aim of this study was to determine the effects of watercress (a CV) supplementation on biomarkers related to cancer risk in healthy adults. Design: A single-blind, randomized, crossover study was conducted in 30 men and 30 women (30 smokers and 30 nonsmokers) with a mean age of 33 y (range: 19-55 y). The subjects were fed 85 g raw watercress daily for 8 wk in addition to their habitual diet. The effect of supplementation was measured on a range of endpoints, including DNA damage in lymphocytes (with the comet assay), activity of detoxifying enzymes (glutathione peroxidase and superoxide dismutase) in erythrocytes, plasma antioxidants (retinol, ascorbic acid, a-tocopherol, lutein, and beta-carotene), plasma total antioxidant status with the use of the ferric reducing ability of plasma assay, and plasma lipid profile. Results: Watercress supplementation (active compared with control phase) was associated with reductions in basal DNA damage (by 17%; P = 0.03), in basal plus oxidative purine DNA damage (by 23.9%; P = 0.002), and in basal DNA damage in response to ex vivo hydrogen peroxide challenge (by 9.4%; P = 0.07). Beneficial changes seen after watercress intervention were greater and more significant in smokers than in nonsmokers. Plasma lutein and P-carotene increased significantly by 100% and 33% (P < 0.001), respectively, after watercress supplementation. Conclusion: The results support the theory that consumption of watercress can be linked to a reduced risk of cancer via decreased damage to DNA and possible modulation of antioxidant status by increasing carotenoid concentrations.
Resumo:
Apolipoprotein E (apoE), an important determinant of plasma lipoprotein metabolism, has three common alleles (ε 2, ε 3, and ε 4). Population studies have shown that the risk of diseases characterized by oxidative damage, such as coronary heart disease and Alzheimer's disease, is significantly higher in ε 4 carriers. We evaluated the association between apoE genotypes and plasma F-2-isoprostane levels, an index of lipid peroxidation, in humans. Two hundred seventy-four healthy subjects (104 males, 170 females; 46.9 &PLUSMN; 13.0 yr; 200 whites, 74 blacks; 81 nonsmokers, 64 passive smokers, and 129 active smokers) recruited for a randomized clinical antioxidant intervention trial were included in this analysis. ApoE genotype was determined by PCR and restriction enzyme digestion. Free plasma F2-isoprostane was measured by GC-MS. Genotype groups were compared using multiple regression analysis with adjustment for sex, age, race, smoking status, body mass index, plasma ascorbic acid, and β-carotene. Subjects with ε 3/ε 4 and ε 4/ε 4 genotype (ε 4-carriers) and with ε 2/ε 3 and ε 3/ε 3 (non-ε 4-carriers) were pooled for analysis. In subjects with high cholesterol levels (total cholesterol above 200 mg/dl), plasma F-2-isoprostane levels were 29% higher in ε 4 carriers than in non-ε 4-carriers (P= 0.0056). High-cholesterol subjects that are ε 4 carriers have significantly higher levels of lipid peroxidation as assessed by circulating F-2-isoprostane levels.
Resumo:
The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study has provided the first evidence implicating vitamin E in hormone synthesis. The effect of vitamin E on stereoidogenesis in testes and adrenal glands was assessed in growing rats using Affymetrix gene-chip technology. Dietary supplementation of rats with vitamin E (60 mg/kg feed) for a period of 429 days caused a significant repression of genes encoding for proteins centrally involved in the uptake (low-density lipoprotein receptor) and de novo synthesis (for example, 7-dehydrocholesterol reductase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, isopentenyl-diphosphate delta-isomerase, and farnesyl pyrophosphate synthetase) of cholesterol, the precursor of all steroid hormones. The present investigation indicates that dietary vitamin E may induce changes in stereoidogenesis by affecting cholesterol homeostasis.