50 resultados para bending press

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newly observed data on the rotational constants of carbon suboxide in excited vibrational states of the low-wavenumber bending vibration ν7 have been successfully interpreted in terms of the two-dimensional anharmonic oscillator wavefunctions associated with this vibration. By combining these results with published infrared and Raman spectra the vibrational assignment has been extended and a refined bending potential for ν7 has been derived: this has a minimum at a bending angle of about 24° at the central C atom, with an energy maximum at the linear configuration some 23 cm−1 above the minimum. From similar data on the combination and hot bands of ν7 with ν4 (1587 cm−1) and ν2 (786 cm−1) the effective ν7 bending potential has also been determined in the one-quantum excited states of ν4 and ν2. The effective ν7 potential shows significant changes from the ground vibrational state; the central hump in the ν7 potential surface is increased to about 50 cm−1 in the v4 = 1 state, and decreased to about 1 cm−1 in the v2 = 1 state. In the light of these results vibrational assignments are suggested for most of the observed bands in the infrared and Raman spectra of C3O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on the vibrational energy levels and rotational constants of carbon suboxide for the low-wavenumber bending mode ν7 are reviewed, in the ground-state manifold, and in the ν2-, ν3-, ν4-, and ν2 + ν4-state manifolds. Following the procedure developed by Duckett, Mills, and Robiette [J. Mol. Spectrosc. 63, 249 (1976)] the data have been inverted to give the effective bending potential in ν7 for each of these five states. Values are obtained for various other parameters in the effective vibration-rotation Hamiltonian. The potential and rotational constants in ν2 + ν4 are given to a close approximation by linear extrapolation from the ground state through the ν2 and ν4 states.