68 resultados para baroclinic instability
em CentAUR: Central Archive University of Reading - UK
Resumo:
It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.
Resumo:
The constant-density Charney model describes the simplest unstable basic state with a planetary-vorticity gradient, which is uniform and positive, and baroclinicity that is manifest as a negative contribution to the potential-vorticity (PV) gradient at the ground and positive vertical wind shear. Together, these ingredients satisfy the necessary conditions for baroclinic instability. In Part I it was shown how baroclinic growth on a general zonal basic state can be viewed as the interaction of pairs of ‘counter-propagating Rossby waves’ (CRWs) that can be constructed from a growing normal mode and its decaying complex conjugate. In this paper the normal-mode solutions for the Charney model are studied from the CRW perspective.
Clear parallels can be drawn between the most unstable modes of the Charney model and the Eady model, in which the CRWs can be derived independently of the normal modes. However, the dispersion curves for the two models are very different; the Eady model has a short-wave cut-off, while the Charney model is unstable at short wavelengths. Beyond its maximum growth rate the Charney model has a neutral point at finite wavelength (r=1). Thereafter follows a succession of unstable branches, each with weaker growth than the last, separated by neutral points at integer r—the so-called ‘Green branches’. A separate branch of westward-propagating neutral modes also originates from each neutral point. By approximating the lower CRW as a Rossby edge wave and the upper CRW structure as a single PV peak with a spread proportional to the Rossby scale height, the main features of the ‘Charney branch’ (0
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low levels
Resumo:
Rigorous upper bounds are derived on the saturation amplitude of baroclinic instability in the two-layer model. The bounds apply to the eddy energy and are obtained by appealing to a finite amplitude conservation law for the disturbance pseudoenergy. These bounds are to be distinguished from those derived in Part I of this study, which employed a pseudomomentum conservation law and provided bounds on the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. Bounds on the eddy energy are worked out for a general class of unstable westerly jets. In the special case of the Phillips model of baroclinic instability, and in the limit of infinitesimal initial eddy amplitude, the bound states that the eddy energy cannot exceed ϵβ2/6F where ϵ = (U − Ucrit)/Ucrit is the relative supercriticality. This bound captures the essential dynamical scalings (i.e., the dependence on ϵ, β, and F) of the saturation amplitudes predicted by weakly nonlinear theory, as well as exhibiting remarkable quantitative agreement with those predictions, and is also consistent with heuristic baroclinic adjustment estimates.
Resumo:
Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds are obtained bath on the depth-integrated eddy potential enstrophy and on the eddy available potential energy (APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem, which is a finite-amplitude generalization of the Charney-Stern theorem. As in Part I, the bounds are valid both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is proportional to the potential vorticity in the interior, and to the potential temperature at the ground. The character of the results depends on the dimensionless external parameter γ = f02ξ/β0N2H, where ξ is the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their usual meaning. When γ ≫ 1, corresponding to “deep” unstable modes (vertical scale ≈H), the bound on the eddy potential enstrophy is just the total potential enstrophy in the system; but when γ≪1, corresponding to ‘shallow’ unstable modes (vertical scale ≈γH), the eddy potential enstrophy can be bounded well below the total amount available in the system. In neither case can the bound on the eddy APE prevent a complete neutralization of the surface temperature gradient which is in accord with numerical experience. For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed (γ + 1)2/24&gamma2h when γ ≥ 1, or 1/6;&gammah when γ ≤ 1; here h = HN/f0L is the dimensionless scale height and L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc estimates based on baroclinic-adjustment arguments. The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization scheme is also discussed.
Resumo:
A rigorous bound is derived which limits the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow within the context of the two-layer model. The bound is valid for conservative (unforced) flow, as well as for forced-dissipative flow that when the dissipation is proportional to the potential vorticity. The method used to derive the bound relies on the existence of a nonlinear Liapunov (normed) stability theorem for subcritical flows, which is a finite-amplitude generalization of the Charney-Stern theorem. For the special case of the Philips model of baroclinic instability, and in the limit of infinitesimal initial nonzonal disturbance amplitude, an improved form of the bound is possible which states that the potential enstrophy of the nonzonal flow cannot exceed ϵβ2, where ϵ = (U − Ucrit)/Ucrit is the (relative) supereriticality. This upper bound turns out to be extremely similar to the maximum predicted by the weakly nonlinear theory. For unforced flow with ϵ < 1, the bound demonstrates that the nonzonal flow cannot contain all of the potential enstrophy in the system; hence in this range of initial supercriticality the total flow must remain, in a certain sense, “close” to a zonal state.
Resumo:
A study is made of the zonal-mean motions induced by a growing baroclinic wave in several contexts, under the framework of three different analysis schemes: the conventional Eulerian mean (EM), the transformed Eulerian mean (TEM), and the generalized Lagrangian mean (GLM). The effect of meridional shear in the initial jet on these induced mean motions is considered by treating the instability problem in the context of the two-layer model. The conceptual simplicity of the TEM formulation is shown to be useful in diagnosing the dynamics of instability, much as it has been found helpful in many problems of wave, mean-flow interaction. In addition, it is found that the TEM vertical velocity is a very good indicator of the GLM vertical velocity. However, the GLM meridional velocity is always convergent towards the centre of instability activity, and is not at all well represented by the nondivergent TEM meridional velocity. In comparing the results with Uryu's (1979) calculation of the GLM circulation induced by a growing Eady wave, it is found that the inclusion of meridional jet shear in the present work leads to some strikingly different effects in the GLM zonal wind acceleration. In the case of pure baroclinic instability treated by Uryu, the Eulerian and Stokes accelerations nearly cancel each other in the centre of the channel, leaving a weak Lagrangian acceleration opposed to the Eulerian one. In the more general case of mixed baroclinic-barotropic instability, however, the Eulerian and Stokes accelerations can reinforce one another, leading to a very strong Lagrangian zonal wind
Resumo:
We investigate baroclinic instability in flow conditions relevant to hot extrasolar planets. The instability is important for transporting and mixing heat, as well as for influencing large-scale variability on the planets. Both linear normal mode analysis and non-linear initial value cal- culations are carried out – focusing on the freely-evolving, adiabatic situation. Using a high- resolution general circulation model (GCM) which solves the traditional primitive equations, we show that large-scale jets similar to those observed in current GCM simulations of hot ex- trasolar giant planets are likely to be baroclinically unstable on a timescale of few to few tens of planetary rotations, generating cyclones and anticyclones that drive weather systems. The growth rate and scale of the most unstable mode obtained in the linear analysis are in qual- itative, good agreement with the full non-linear calculations. In general, unstable jets evolve differently depending on their signs (eastward or westward), due to the change in sign of the jet curvature. For jets located at or near the equator, instability is strong at the flanks – but not at the core. Crucially, the instability is either poorly or not at all captured in simulations with low resolution and/or high artificial viscosity. Hence, the instability has not been observed or emphasized in past circulation studies of hot extrasolar planets.
Resumo:
Using an idealized primitive equation model, we investigate how stratospheric conditions alter the development of baroclinic instability in the troposphere. Starting from the lifecycle paradigm of Thorncroft et al., we consider the evolution of baroclinic lifecycles resulting from the addition of a stratospheric jet to the LC1 initial condition. We find that the addition of the stratospheric jet yields a net surface geopotential height anomaly that strongly resembles the Arctic Oscillation. With the additional modification of the tropospheric winds to resemble the high-AO climatology, the surface response is amplified by a factor 10 and, though dominated by the tropospheric changes, shows similar sensitivity to the stratospheric conditions.
Resumo:
The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.
Resumo:
An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreement with Green’s model of baroclinic instability, wave 5 is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of wave, only acts as a positive feedback on its predominantly baroclinic energetics. The quasi-stationary wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. It is also found that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave’s energy is then trapped in the waveguide created by the upper tropospheric jet stream. In agreement with Green’s theory, as the equator-to-pole SST difference is reduced, the stationary marginally stable component shifts toward higher wavenumbers, while wave 5 becomes neutral and westward propagating. Some properties of the aquaplanet quasi-stationary waves are found to be in interesting agreement with a low frequency wave observed by Salby during December–February in the Southern Hemisphere so that this perspective on low frequency variability, apart from its value in terms of basic geophysical fluid dynamics, might be of specific interest for studying the earth’s atmosphere.
Resumo:
We report on the results of a laboratory investigation using a rotating two-layer annulus experiment, which exhibits both large-scale vortical modes and short-scale divergent modes. A sophisticated visualization method allows us to observe the flow at very high spatial and temporal resolution. The balanced long-wavelength modes appear only when the Froude number is supercritical (i.e. $F\,{>}\,F_\mathrm{critical}\,{\equiv}\, \upi^2/2$), and are therefore consistent with generation by a baroclinic instability. The unbalanced short-wavelength modes appear locally in every single baroclinically unstable flow, providing perhaps the first direct experimental evidence that all evolving vortical flows will tend to emit freely propagating inertia–gravity waves. The short-wavelength modes also appear in certain baroclinically stable flows. We infer the generation mechanisms of the short-scale waves, both for the baro-clinically unstable case in which they co-exist with a large-scale wave, and for the baroclinically stable case in which they exist alone. The two possible mechanisms considered are spontaneous adjustment of the large-scale flow, and Kelvin–Helmholtz shear instability. Short modes in the baroclinically stable regime are generated only when the Richardson number is subcritical (i.e. $\hbox{\it Ri}\,{<}\,\hbox{\it Ri}_\mathrm{critical}\,{\equiv}\, 1$), and are therefore consistent with generation by a Kelvin–Helmholtz instability. We calculate five indicators of short-wave generation in the baroclinically unstable regime, using data from a quasi-geostrophic numerical model of the annulus. There is excellent agreement between the spatial locations of short-wave emission observed in the laboratory, and regions in which the model Lighthill/Ford inertia–gravity wave source term is large. We infer that the short waves in the baroclinically unstable fluid are freely propagating inertia–gravity waves generated by spontaneous adjustment of the large-scale flow.
Resumo:
We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.