148 resultados para balancing selection

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last decade, there has been increasing circumstantial evidence for the action of natural selection in the genome, arising largely from molecular genetic surveys of large numbers of markers. In nonmodel organisms without densely mapped markers, a frequently used method is to identify loci that have unusually high or low levels of genetic differentiation, or low genetic diversity relative to other populations. The paper by Makinen et al. (2008a) in this issue of Molecular Ecology reports the results of a survey of microsatellite allele frequencies at more than 100 loci in seven populations of the three-spined stickleback (Gasterosteus aculeatus). They show that a microsatellite locus and two indel markers located within the intron of the Eda gene, known to control the number of lateral plates in the stickleback (Fig. 1), tend to be much more highly genetically differentiated than other loci, a finding that is consistent with the action of local selection. They identify a further two independent candidates for local selection, and, most intriguingly, they further suggest that up to 15% of their loci may provide evidence of balancing selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F-ST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F-ST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F-ST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peat wetlands that have been restored from agricultural Land have the potential to act as Long term sources of phosphorus (P) and, therefore have to potenital to accelerate freshwater eutrophication. During a two-year study the water table in a eutrophic fen peat that was managed by pump drainage fluctuated annually between +20 cm and -60 cm relative to ground Level. This precise management was facilitated by the high hydraulic conductivity (K) of the humified peat (1.1 x 10(-5) m s(-1)) below around 60 cm depth. However, during one week of intermittent pumping, as much as 50 g ha(-1) dissolved P entered the pumped ditch. Summer. rainfall events and autumn reflooding also triggered P losses. The P Losses were attributed to the low P sorption capacity (217 mg kg(-1)) of the saturated peat below 60 cm, combined with its high K and the reductive dissolution of Fe bound P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic premise of transaction-cost theory is that the decision to outsource, rather than to undertake work in-house, is determined by the relative costs incurred in each of these forms of economic organization. In construction the "make or buy" decision invariably leads to a contract. Reducing the costs of entering into a contractual relationship (transaction costs) raises the value of production and is therefore desirable. Commonly applied methods of contractor selection may not minimise the costs of contracting. Research evidence suggests that although competitive tendering typically results in the lowest bidder winning the contract this may not represent the lowest project cost after completion. Multi-parameter and quantitative models for contractor selection have been developed to identify the best (or least risky) among bidders. A major area in which research is still needed is in investigating the impact of different methods of contractor selection on the costs of entering into a contract and the decision to outsource.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple diagrammatic rule is presented for determining the rotational selection rules governing transitions between any pair of vibronic states in electric dipole spectra of symmetric top molecules. The rule is useful in cases where degenerate vibronic levels with first-order Coriolis splittings occur, because it gives immediately the selection rule for the (+l) and (-l) components in any degenerate state. The rule is also helpful in determining the symmetry species and the effective zeta constants in overtone and combination levels involving degenerate vibrations. Particular attention is devoted to the conventions concerning the signs of zeta constants.