74 resultados para bacterial leakage

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the effects of defoliation on microbial community structure, rhizosphere soil samples were taken pre-, and post-defoliation from the root tip and mature root regions of Trifolium repens L. and Lolium perenne L. Microbial DNA isolated from samples was used to generate polymerase chain reaction-denaturing gradient gel electrophoresis molecular profiles of bacterial and fungal communities. Bacterial plate counts were also obtained. Neither plant species nor defoliation affected the bacterial and fungal community structures in both the root tip and mature root regions, but there were significant differences in the bacterial and fungal community profiles between the two root regions for each plant. Prior to defoliation, there was no difference between plants for bacterial plate counts of soils from the root tip regions; however, counts were greater in the mature root region of L. perenne than T. repens. Bacterial plate counts for T. repens were higher in the root tip than the mature root region. After defoliation, there was no effect of plant type, position along the root or defoliation status on bacterial plate counts, although there were significant increases in bacterial plate counts with time. The results indicate that a general effect existed during maturation in the root regions of each plant, which had a greater impact on microbial community structure than either plant type or the effect of defoliation. In addition there were no generic consequences with regard to microbial populations in the rhizosphere as a response to plant defoliation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive plant species have been shown to alter the microbial community composition of the soils they invade and it is suggested that this below-ground perturbation of potential pathogens, decomposers or symbionts may feedback positively to allow invasive success. Whether these perturbations are mediated through specific components of root exudation are not understood. We focussed on 8-hydroxyquinoline, a putative allelochemical of Centaurea diffusa (diffuse knapweed) and used an artificial root system to differentiate the effects of 8-hydroxyquinoline against a background of total rhizodeposition as mimicked through supply of a synthetic exudate solution. In soil proximal (0-10 cm) to the artificial root, synthetic exudates had a highly significant (P < 0.001) influence on dehydrogenase, fluorescein diacetate hydrolysis and urease activity. in addition, 8-hydroxyquinoline was significant (p = 0.003) as a main effect on dehydrogenase activity and interacted with synthetic exudates to affect urease activity (p = 0.09). Hierarchical cluster analysis of 16S rDNA-based DGGE band patterns also identified a primary affect of synthetic exudates and a secondary affect of 8-hydroxyquinoline on bacterial community structure. Thus, we show that the artificial rhizosphere produced by the synthetic exudates was the predominant effect, but, that the influence of the 8-hydroxyquinoline signal on the activity and structure of soil microbial communities could also be detected. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series of transports in the Agulhas region have been constructed by simulating Lagrangian drifter trajectories in a 1/10 degree two-way nested ocean model. Using these 34 year long time series it is shown that smaller (larger) Agulhas Current transport leads to larger (smaller) Indian-Atlantic inter-ocean exchange. When transport is low, the Agulhas Current detaches farther downstream from the African continental slope. Moreover, the lower inertia suppresses generation of anti-cyclonic vorticity. These two effects cause the Agulhas retroflection to move westward and enhance Agulhas leakage. In the model a 1 Sv decrease in Agulhas Current transport at 32°S results in a 0.7 ± 0.2 Sv increase in Agulhas leakage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Live bacterial vaccines have great promise both as vaccines against enteric pathogens and as heterologous antigen vectors against diverse diseases. Ideally, room temperature stable dry formulations of live bacterial vaccines will allow oral vaccination without cold-chain storage or injections. Attenuated Salmonella can cross the intestinal wall and deliver replicating antigen plus innate immune activation signals directly to the intestinal immune tissues, however the ingested bacteria must survive firstly gastric acid and secondly the antimicrobial defences of the small intestine. We found that the way in which cells are grown prior to formulation markedly affects sensitivity to acid and bile. Using a previously published stable storage formulation that maintained over 10% viability after 56 days storage at room temperature, we found dried samples of an attenuated S. typhimurium vaccine lost acid and bile resistance compared to the same bacteria taken from fresh culture. The stable formulation utilised osmotic preconditioning in defined medium plus elevated salt concentration to induce intracellular trehalose accumulation before drying. Dried bacteria grown in rich media without osmotic preconditioning showed more resistance to bile, but less stability during storage, suggesting a trade-off between bile resistance and stability. Further optimization is needed to produce the ultimate room-temperature stable oral live bacterial vaccine formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different formulations of Bacillus subtilis were prepared using standard laboratory protocols. Bacillus subtilis survived in glucose and talc powders at 8.6 and 7.8 log(10) CFU/g, respectively, for 1 year of storage at room temperature compared with 3.5 log(10) CFU/g on a peat formulation. Glasshouse experiments using soil and seed treatments were conducted to test the efficacy of B. subtilis for protecting lentil against the wilt disease caused by Fusariumoxysporum f. sp. lentis. Seed treatments with formulations of B. subtilis on glucose, talc and peat significantly enhanced its biocontrol activity against Fusarium compared with a treatment in which spores were applied directly to seed. The formulations decreased disease severity by reducing colonization of plants by the pathogen, promoting their growth and increased the dry weight of lentil plants. Of these treatments the glucose and talc-based powder formulations were more effective than the peat formulation and the spore application without a carrier. It was shown that the B. subtilis spores applied with glucose were viable for longer than those applied with other carriers. Seed treatment with these formulated spores is an effective delivery system that can provide a conducive environment for B. subtilis to suppress vascular wilt disease on lentil and has the potential for utilization in commercial field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasion and infectivity of Meloidogyne javanica juveniles (J2) encumbered with spore of Pasteuria Penetrans were influenced by the temperature and the time J2 were in the soil before exposure to roots. The percentage of infected females decreased as the time juveniles spent in soil increased. When spore encumbered J2 were maintained at 30 degrees C the decrease in infection was greater than that at 18 degrees C. The thermal time requirements and the base temperature for P. penetrans development were estimated. The rate of development followed an exponential curve between 21 and 36 degrees C and the base temperature for development was estimated by extrapolation to be 18.5 degrees C. The effect of integrating a nematode resistant tomato cultivar with the biocontrol agent P. penetrans also was investigated. The ability of the biocontrol agent to reduce numbers of root-knot nematodes was dependent on the densities of the nematode and P. penetrans spores in the soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three concentrations of Xenorhabdus nematophila and Xenorhabdus spp., (4x10(5,) 4x10(6,) 4x10(7) cells/ml) were evaluated in the laboratory and in pot experiments to test their antagonistic effects on Fusarium oxysporum f.sp., lycopersici. All concentrations effectively inhibited its growth on agar plates. In soil under greenhouse conditions treatments with each bacterium at 4x10(7) cells/ml reduced the disease incidence of tomato by up to 40.38 and 47.54% respectively and there were significant increases of plant biomass by 198 and 211% respectively. The rhizosphere population of Fusarium oxysporum f.sp., lycopersici was reduced by 97%. The Xenorhabdus spp., was comparatively more effective than X. nematophila.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the evolution of microbial pathogens has been advanced by the discovery of "islands" of DNA that differ from core genomes and contain determinants of virulence [1, 2]. The acquisition of genomic islands (GIs) by horizontal gene transfer (HGT) is thought to have played a major role in microbial evolution. There are, however, few practical demonstrations of the acquisition of genes that control virulence, and, significantly, all have been achieved outside the animal or plant host. Loss of a GI from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stress imposed by the plant's resistance response [3]. Here, we show that the complete episomal island, which carries pathogenicity genes including the effector avrPphB, transfers between strains of Pph by transformation in planta and inserts at a specific att site in the genome of the recipient. Our results show that the evolution of bacterial pathogens by HGT may be achieved via transformation, the simplest mechanism of DNA exchange. This process is activated by exposure to plant defenses, when the pathogen is in greatest need of acquiring new genetic traits to alleviate the antimicrobial stress imposed by plant innate immunity [4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EfeUOB system of Escherichia coli is a tripartite, low pH, ferrous iron transporter. It resembles the high-affinity iron transporter (Ftr1p-Fet3p) of yeast in that EfeU is homologous to Ftr1p, an integral-membrane iron-permease. However, EfeUOB lacks an equivalent of the Fet3p component—the multicopper oxidase with three cupredoxin-like domains. EfeO and EfeB are periplasmic but their precise roles are unclear. EfeO consists primarily of a C-terminal peptidase-M75 domain with a conserved ‘HxxE’ motif potentially involved in metal binding. The smaller N-terminal domain (EfeO-N) is predicted to be cupredoxin (Cup) like, suggesting a previously unrecognised similarity between EfeO and Fet3p. Our structural modelling of the E. coli EfeO Cup domain identifies two potential metal-binding sites. Site I is predicted to bind Cu2+ using three conserved residues (C41 and 103, and E66) and M101. Of these, only one (C103) is conserved in classical cupredoxins where it also acts as a Cu ligand. Site II most probably binds Fe3+ and consists of four well conserved surface Glu residues. Phylogenetic analysis indicates that the EfeO-Cup domains form a novel Cup family, designated the ‘EfeO-Cup’ family. Structural modelling of two other representative EfeO-Cup domains indicates that different subfamilies employ distinct ligand sets at their proposed metal-binding sites. The ~100 efeO homologues in the bacterial sequence databases are all associated with various iron-transport related genes indicating a common role for EfeO-Cup proteins in iron transport, supporting a new copper-iron connection in biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.