85 resultados para automatic attention
em CentAUR: Central Archive University of Reading - UK
Resumo:
The artificial grammar (AG) learning literature (see, e.g., Mathews et al., 1989; Reber, 1967) has relied heavily on a single measure of implicitly acquired knowledge. Recent work comparing this measure (string classification) with a more indirect measure in which participants make liking ratings of novel stimuli (e.g., Manza & Bornstein, 1995; Newell & Bright, 2001) has shown that string classification (which we argue can be thought of as an explicit, rather than an implicit, measure of memory) gives rise to more explicit knowledge of the grammatical structure in learning strings and is more resilient to changes in surface features and processing between encoding and retrieval. We report data from two experiments that extend these findings. In Experiment 1, we showed that a divided attention manipulation (at retrieval) interfered with explicit retrieval of AG knowledge but did not interfere with implicit retrieval. In Experiment 2, we showed that forcing participants to respond within a very tight deadline resulted in the same asymmetric interference pattern between the tasks. In both experiments, we also showed that the type of information being retrieved influenced whether interference was observed. The results are discussed in terms of the relatively automatic nature of implicit retrieval and also with respect to the differences between analytic and nonanalytic processing (Whittlesea Price, 2001).
Resumo:
The aim of this study was to investigate the widely held, but largely untested, view that implicit memory (repetition priming) reflects an automatic form of retrieval. Specifically, in Experiment 1 we explored whether a secondary task (syllable monitoring), performed during retrieval, would disrupt performance on explicit (cued recall) and implicit (stem completion) memory tasks equally. Surprisingly, despite substantial memory and secondary costs to cued recall when performed with a syllable-monitoring task, the same manipulation had no effect on stem completion priming or on secondary task performance. In Experiment 2 we demonstrated that even when using a particularly demanding version of the stem completion task that incurred secondary task costs, the corresponding disruption to implicit memory performance was minimal. Collectively, the results are consistent with the view that implicit memory retrieval requires little or no processing capacity and is not seemingly susceptible to the effects of dividing attention at retrieval.
Resumo:
To investigate the mechanisms involved in automatic processing of facial expressions, we used the QUEST procedure to measure the display durations needed to make a gender decision on emotional faces portraying fearful, happy, or neutral facial expressions. In line with predictions of appraisal theories of emotion, our results showed greater processing priority of emotional stimuli regardless of their valence. Whereas all experimental conditions led to an averaged threshold of about 50 ms, fearful and happy facial expressions led to significantly less variability in the responses than neutral faces. Results suggest that attention may have been automatically drawn by the emotion portrayed by face targets, yielding more informative perceptions and less variable responses. The temporal resolution of the perceptual system (expressed by the thresholds) and the processing priority of the stimuli (expressed by the variability in the responses) may influence subjective and objective measures of awareness, respectively.
Resumo:
Causal attribution has been one of the most influential frameworks in the literature of achievement motivation, but previous studies considered achievement attribution as relatively deliberate and effortful processes. In the current study, we tested the hypothesis that people automatically attribute their achievement failure to their ability, but reduce the ability attribution in a controlled manner. To address this hypothesis, we measured participants’ causal attribution belief for their task failure either under the cognitive load (load condition) or with full attention (no-load condition). Across two studies, participants attributed task performance to their ability more in the load than in the no-load condition. The increased ability attribution under cognitive load further affected intrinsic motivation. These results indicate that cognitive resources available after feedback play crucial roles in determining causal attribution belief, as well as achievement motivations. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)
Resumo:
The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.
Resumo:
We argue that impulsiveness is characterized by compromised timing functions such as premature motor timing, decreased tolerance to delays, poor temporal foresight and steeper temporal discounting. A model illustration for the association between impulsiveness and timing deficits is the impulsiveness disorder of attention-deficit hyperactivity disorder (ADHD). Children with ADHD have deficits in timing processes of several temporal domains and the neural substrates of these compromised timing functions are strikingly similar to the neuropathology of ADHD. We review our published and present novel functional magnetic resonance imaging data to demonstrate that ADHD children show dysfunctions in key timing regions of prefrontal, cingulate, striatal and cerebellar location during temporal processes of several time domains including time discrimination of milliseconds, motor timing to seconds and temporal discounting of longer time intervals. Given that impulsiveness, timing abnormalities and more specifically ADHD have been related to dopamine dysregulation, we tested for and demonstrated a normalization effect of all brain dysfunctions in ADHD children during time discrimination with the dopamine agonist and treatment of choice, methylphenidate. This review together with the new empirical findings demonstrates that neurocognitive dysfunctions in temporal processes are crucial to the impulsiveness disorder of ADHD and provides first evidence for normalization with a dopamine reuptake inhibitor.
Resumo:
Fifty-nine healthy infants were filmed with their mothers and with a researcher at two, four, six and nine months in face-to-face play, and in toy-play at six and nine months. During toy-play at both ages, two indices of joint attention (JA)—infant bids for attention, and percent of time in shared attention—were assessed, along with other behavioural measures. Global ratings were made at all four ages of infants’ and mothers’ interactive style. The mothers varied in psychiatric history (e.g., half had experienced postpartum depression) and socioeconomic status, so their interactive styles were diverse. Variation in nine-month infant JA — with mother and with researcher — was predicted by variation in maternal behaviour and global ratings at six months, but not at two or four months. Concurrent adult behaviour also influenced nine-month JA, independent of infant ratings. Six-month maternal behaviours that positively predicted later JA (some of which remained important at nine months) included teaching, conjoint action on a toy, and global sensitivity. Other behaviours (e.g., entertaining) negatively predicted later JA. Findings are discussed in terms of social-learning and neurobiological accounts of JA emergence.
Resumo:
The concept of “working” memory is traceable back to nineteenth century theorists (Baldwin, 1894; James 1890) but the term itself was not used until the mid-twentieth century (Miller, Galanter & Pribram, 1960). A variety of different explanatory constructs have since evolved which all make use of the working memory label (Miyake & Shah, 1999). This history is briefly reviewed and alternative formulations of working memory (as language-processor, executive attention, and global workspace) are considered as potential mechanisms for cognitive change within and between individuals and between species. A means, derived from the literature on human problem-solving (Newell & Simon, 1972), of tracing memory and computational demands across a single task is described and applied to two specific examples of tool-use by chimpanzees and early hominids. The examples show how specific proposals for necessary and/or sufficient computational and memory requirements can be more rigorously assessed on a task by task basis. General difficulties in connecting cognitive theories (arising from the observed capabilities of individuals deprived of material support) with archaeological data (primarily remnants of material culture) are discussed.
Resumo:
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethyl-cyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Purpose. Previous research has shown that children with Developmental Coordination Disorder (DCD) have poorly developed strategies for allocating attention. This study examines the allocation of attention and integration of visuo-spatial and motor systems in children with DCD in a motor (look+hit condition) and a motor-free (look condition) task. Method. Three groups of control children were used to compare the performance of a group of children with DCD. Children were seated in front of a central fixation point and six peripheral targets, and were asked to look at or hit targets when illuminated. Saccade/hand movement latencies were measured on gap trials (gap between fixation offset and target onset) and overlap trials (fixation offset and target onset overlapped). Results. DCD children were not slower than controls to disengage attention during the look condition. However, during the look+hit condition the DCD children showed a prolonged disengagement period, which was also seen in younger control children. Conclusions. The results suggest that DCD children may have deficits in the allocation of attention for action, in both the speed of onset of a movement and the accuracy of the movement. It is concluded that attention disengagement may contribute to problems of visuo-motor integration in DCD.
Resumo:
The visuo-spatial abilities of individuals with Williams syndrome (WS) have consistently been shown to be generally weak. These poor visuo-spatial abilities have been ascribed to a local processing bias by some [R. Rossen, E.S. Klima, U. Bellugi, A. Bihrle, W. Jones, Interaction between language and cognition: evidence from Williams syndrome, in: J. Beitchman, N. Cohen, M. Konstantareas, R. Tannock (Eds.), Language, Learning and Behaviour disorders: Developmental, Behavioural and Clinical Perspectives, Cambridge University Press, New York, 1996, pp. 367-392] and conversely, to a global processing bias by others [Psychol. Sci. 10 (1999) 453]. In this study, two identification versions and one drawing version of the Navon hierarchical processing task, a non-verbal task, were employed to investigate this apparent contradiction. The two identification tasks were administered to 21 individuals with WS, 21 typically developing individuals, matched by non-verbal ability, and 21 adult participants matched to the WS group by mean chronological age (CA). The third, drawing task was administered to the WS group and the typically developing (TD) controls only. It was hypothesised that the WS group would show differential processing biases depending on the type of processing the task was measuring. Results from two identification versions of the Navon task measuring divided and selective attention showed that the WS group experienced equal interference from global to local as from local to global levels, and did not show an advantage of one level over another. This pattern of performance was broadly comparable to that of the control groups. The third task, a drawing version of the Navon task, revealed that individuals with WS were significantly better at drawing the local form in comparison to the global figure, whereas the typically developing control group did not show a bias towards either level. In summary, this study demonstrates that individuals with WS do not have a local or a global processing bias when asked to identify stimuli, but do show a local bias in their drawing abilities. This contrast may explain the apparently contrasting findings from previous studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Reading difficulties (RD) and movement difficulties (MD) co-occur more often in clinical populations than expected for independent disorders. In this study, we investigated the pattern of association between attentional processes, RD and MD in a population of 9 year old school children. Children were screened to identify index groups with RD, MD or both, plus a control group. These groups were then tested on a battery of cognitive attention assessments (TEA-Ch). Results confirmed that the occurrence of RD and MD was greater than would be predicted for independent disorders. Additionally, children with MD, whether or not combined with RD, had poor performance on all attention measures when compared with typically developing children. Children with RD only, were no poorer on measures of attention than typical children. The results are discussed with respect to approaches proposed to account for the co-occurrence of disorders.
Resumo:
Objective: To explore whether patients relearning to walk after acquired brain injury and showing cognitive-motor interference were aware of divided attention difficulty; whether their perceptions concurred with those of treating staff. Design: Patients and neurophysiotherapists (from rehabilitation and disabled wards) completed questionnaires. Factor analyses were applied to responses. Correlations between responses, clinical measures and experimental decrements were examined. Results: Patient/staff responses showed some agreement; staff reported higher levels of perceived difficulty; responses conformed to two factors. One factor (staff/patients alike) reflected expectations about functional/motor status and did not correlate with decrements. The other factor (patients) correlated significantly with dual-task motor decrement, suggesting some genuine awareness of difficulty (cognitive performance prioritized over motor control). The other factor (staff) correlated significantly with cognitive decrement (gait prioritized over sustained attention). Conclusions: Despite some inaccurate estimation of susceptibility; patients and staff do exhibit awareness of divided attention difficulty, but with a limited degree of concurrence. In fact, our results suggest that patients and staff may be sensitive to different aspects of the deficit. Rather than 'Who knows best?', it is a question of 'Who knows what?.
Resumo:
The nature of the spatial representations that underlie simple visually guided actions early in life was investigated in toddlers with Williams syndrome (WS), Down syndrome (DS), and healthy chronological age- and mental age-matched controls, through the use of a "double-step" saccade paradigm. The experiment tested the hypothesis that, compared to typically developing infants and toddlers, and toddlers with DS, those with WS display a deficit in using spatial representations to guide actions. Levels of sustained attention were also measured within these groups, to establish whether differences in levels of engagement influenced performance on the double-step saccade task. The results showed that toddlers with WS were unable to combine extra-retinal information with retinal information to the same extent as the other groups, and displayed evidence of other deficits in saccade planning, suggesting a greater reliance on sub-cortical mechanisms than the other populations. Results also indicated that their exploration of the visual environment is less developed. The sustained attention task revealed shorter and fewer periods of sustained attention in toddlers with DS, but not those with WS, suggesting that WS performance on the double-step saccade task is not explained by poorer engagement. The findings are also discussed in relation to a possible attention disengagement deficit in WS toddlers. Our study highlights the importance of studying genetic disorders early in development. (C) 2002 Elsevier Science Ltd. All rights reserved.