31 resultados para autoimmune diseases
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background 29 autoimmune diseases, including Rheumatoid Arthritis, gout, Crohn’s Disease, and Systematic Lupus Erythematosus affect 7.6-9.4% of the population. While effective therapy is available, many patients do not follow treatment or use medications as directed. Digital health and Web 2.0 interventions have demonstrated much promise in increasing medication and treatment adherence, but to date many Internet tools have proven disappointing. In fact, most digital interventions continue to suffer from high attrition in patient populations, are burdensome for healthcare professionals, and have relatively short life spans. Objective Digital health tools have traditionally centered on the transformation of existing interventions (such as diaries, trackers, stage-based or cognitive behavioral therapy programs, coupons, or symptom checklists) to electronic format. Advanced digital interventions have also incorporated attributes of Web 2.0 such as social networking, text messaging, and the use of video. Despite these efforts, there has not been little measurable impact in non-adherence for illnesses that require medical interventions, and research must look to other strategies or development methodologies. As a first step in investigating the feasibility of developing such a tool, the objective of the current study is to systematically rate factors of non-adherence that have been reported in past research studies. Methods Grounded Theory, recognized as a rigorous method that facilitates the emergence of new themes through systematic analysis, data collection and coding, was used to analyze quantitative, qualitative and mixed method studies addressing the following autoimmune diseases: Rheumatoid Arthritis, gout, Crohn’s Disease, Systematic Lupus Erythematosus, and inflammatory bowel disease. Studies were only included if they contained primary data addressing the relationship with non-adherence. Results Out of the 27 studies, four non-modifiable and 11 modifiable risk factors were discovered. Over one third of articles identified the following risk factors as common contributors to medication non-adherence (percent of studies reporting): patients not understanding treatment (44%), side effects (41%), age (37%), dose regimen (33%), and perceived medication ineffectiveness (33%). An unanticipated finding that emerged was the need for risk stratification tools (81%) with patient-centric approaches (67%). Conclusions This study systematically identifies and categorizes medication non-adherence risk factors in select autoimmune diseases. Findings indicate that patients understanding of their disease and the role of medication are paramount. An unexpected finding was that the majority of research articles called for the creation of tailored, patient-centric interventions that dispel personal misconceptions about disease, pharmacotherapy, and how the body responds to treatment. To our knowledge, these interventions do not yet exist in digital format. Rather than adopting a systems level approach, digital health programs should focus on cohorts with heterogeneous needs, and develop tailored interventions based on individual non-adherence patterns.
Resumo:
Background: Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. Methodology/Principal Findings: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent, Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. Conclusions/Significance: The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene.
Resumo:
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.
Resumo:
The 'direct costs' attributable to 30 different endemic diseases of farm animals in Great Britain are estimated using a standardised method to construct a simple model for each disease that includes consideration of disease prevention and treatment costs. The models so far developed provide a basis for further analyses including cost-benefit analyses for the economic assessment of disease control options. The approach used reflects the inherent livestock disease information constraints, which limit the application of other economic analytical methods. It is a practical and transparent approach that is relatively easily communicated to veterinary scientists and policy makers. The next step is to develop the approach by incorporating wider economic considerations into the analyses in a way that will demonstrate to policy makers and others the importance of an economic perspective to livestock disease issues.
Resumo:
This Note outlines the further development of a system of models for the estimation of the costs of livestock diseases first presented by Bennett (2003). The models have been developed to provide updated and improved estimates of the costs associated with 34 endemic diseases of livestock in Great Britain, using border prices and including assessments of the impact of diseases on human health and animal welfare. Results show that, of the diseases studied, mastitis has the highest costs for cattle diseases, enzootic abortion for sheep diseases, swine influenza for pig diseases and salmonellosis for poultry diseases.
Resumo:
Objectives: To conduct it detailed evaluation, with meta-analyses, of the published evidence on milk and dairy consumption and the incidence of vascular diseases and diabetes. Also to summarise the evidence on milk and dairy consumption and cancer reported by the World Cancer Research Fund and then to consider the relevance of milk and dairy consumption to survival in the UK, a typical Western community. Finally, published evidence on relationships with whole milk and fat-reduced milks was examined. Methods: Prospective cohort studies of vascular disease and diabetes with baseline data on milk or dairy consumption and a relevant disease outcome were identified by searching MEDLINE, and reference lists in the relevant published reports. Meta-analyses of relationships in these reports were conducted. The likely effect of milk and dairy consumption on survival was then considered, taking into account the results of published overviews of relationships of these foods with cancer. Results: From meta-analysis of 15 studies the relative risk of stroke and/or heart disease in subjects with high milk or dairy consumption was 0.84 (95% CI 0.76, 0,93) and 0.79 (0.75, 0.82) respectively, relative to the risk in those with low consumption. Four studies reported incident diabetes as an outcome, and the relative risk in the Subjects with the highest intake of milk or diary foods was 0.92 (0.86, 0.97). Conclusions: Set against the proportion of total deaths attributable to the life-threatening diseases in the UK, vascular disease, diabetes and cancer, the results of meta-analyses provide evidence of an overall survival advantage from the consumption of milk and dairy foods.
Resumo:
Twenty-eight field experiments on sandy-loam soils in the UK (1982-2003) are reviewed by relating the extension of the green area duration of the flag leaf (GLADF) by fungicides to effects on yield and quality of winter wheat. Over all experiments mean grain yield = 8.85t ha(-1) at 85% DM. With regards quality, mean values were: thousand grain weight (TGW) = 44.5 g; specific weight (SWT) = 76.9 kg hl(-1); crude protein concentration (CP (N x 5.7)) = 12.5 % DM; Hagberg falling number (HFN) = 285 s; and sodium dodecyl sulphate (SDS)-sedimentation volume = 69ml. For each day (d) that fungicides increased GLADF there were associated average increases in yield (0.144 1 ha(-1) d(-1), se 0.0049, df = 333), TGW (0.56 gd(-1), se = 0.017) and SWT (0.22 kg hl(-1) d(-1), se 0.011). Some curvature was evident in all these relationships. When GLADF was delayed beyond 700 degrees Cd after anthesis, as was possible in cool wet seasons, responses were curtailed, or less reliable. Despite this apparent terminal sink limitation, fungicide effects on sink size, eg endosperm cell numbers or maximum water mass per grain, were not prerequisites for large effects on grain yield, TGW or SWT. Fungicide effects on CP were variable. Although the average response of CP was negative (-0.029%DM/d; se = 0.00338), this depended on cultivar and disease controlled. Controlling biotrophs such as rusts, (Puccinia spp.) tended to increase CP, whereas controlling a more necrotrophic pathogen (Septoria tritici) usually reducedCP. Irrespective of pathogen controlled, delaying senescence of the flag leaf was associated with increased nitrogen yields in the grain (averaging 2.24 kg N ha-1 d(-1), se = 0.0848) due to both increased N uptake into the above ground crop, and also more efficient remobilisation of N from leaf laminas. When sulphur availability appeared to be adequate, fungicide x cultivar interactions were similar on S as for CP, although N:S ratios tended to decline (i.e. improve for bread making) when S. tritici was controlled. On average, SDS-sedimentation volume declined (-0. 18 ml/d, se = 0.027) with increased GLADF, broadly commensurate with the average effect on CP. Hagberg falling number decreased as fungicide increased GLADF (-2.73 s/d, se = 0.178), indicating an increase in alpha-amylase activity.
Resumo:
Four foliar and two stem-base pathogens were inoculated onto wheat plants grown in different substrates in pot experiments. Soils from four different UK locations were each treated in three ways: (i) straw incorporated in the field at 10 t ha−1 several months previously; (ii) silicon fertilization at 100 mg L−1 during the experiment; and (iii) no amendments. A sand and vermiculite mix was used with and without silicon amendment. The silicon treatment increased plant silica concentrations in all experiments, but incorporating straw was not associated with raised plant silica concentrations. Blumeria graminis and Puccinia recondita were inoculated by shaking infected plants over the test plants, followed by suitable humid periods. The silicon treatment reduced powdery mildew (B. graminis) substantially in sand and vermiculite and in two of the soils, but there were no effects on the slight infection by brown rust (P. recondita). Phaeosphaeria nodorum and Mycosphaerella graminicola were inoculated as conidial suspensions. Leaf spot caused by P. nodorum was reduced in silicon-amended sand and vermiculite; soil was not tested. Symptoms of septoria leaf blotch caused by M. graminicola were reduced by silicon amendment in a severely infected sand and vermiculite experiment but not in soil or a slightly infected sand and vermiculite experiment. Oculimacula yallundae (eyespot) and Fusarium culmorum (brown foot rot) were inoculated as agar plugs on the stem base. Severity of O. yallundae was reduced by silicon amendment of two of the soils but not sand and vermiculite; brown foot rot symptoms caused by F. culmorum were unaffected by silicon amendment. The straw treatment reduced severity of powdery mildew but did not detectably affect the other pathogens. Both straw and silicon treatments appeared to increase plant resistance to all diseases only under high disease pressure.