3 resultados para auto-logistic models

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combinations of drugs are increasingly being used for a wide variety of diseases and conditions. A pre-clinical study may allow the investigation of the response at a large number of dose combinations. In determining the response to a drug combination, interest may lie in seeking evidence of synergism, in which the joint action is greater than the actions of the individual drugs, or of antagonism, in which it is less. Two well-known response surface models representing no interaction are Loewe additivity and Bliss independence, and Loewe or Bliss synergism or antagonism is defined relative to these. We illustrate an approach to fitting these models for the case in which the marginal single drug dose-response relationships are represented by four-parameter logistic curves with common upper and lower limits, and where the response variable is normally distributed with a common variance about the dose-response curve. When the dose-response curves are not parallel, the relative potency of the two drugs varies according to the magnitude of the desired effect and the models for Loewe additivity and synergism/antagonism cannot be explicitly expressed. We present an iterative approach to fitting these models without the assumption of parallel dose-response curves. A goodness-of-fit test based on residuals is also described. Implementation using the SAS NLIN procedure is illustrated using data from a pre-clinical study. Copyright © 2007 John Wiley & Sons, Ltd.