95 resultados para athletic performance, hot climate, plethysmography, hydrotherapy, recovery.

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban land surface models (LSM) are commonly evaluated for short periods (a few weeks to months) because of limited observational data. This makes it difficult to distinguish the impact of initial conditions on model performance or to consider the response of a model to a range of possible atmospheric conditions. Drawing on results from the first urban LSM comparison, these two issues are considered. Assessment shows that the initial soil moisture has a substantial impact on the performance. Models initialised with soils that are too dry are not able to adjust their surface sensible and latent heat fluxes to realistic values until there is sufficient rainfall. Models initialised with too wet soils are not able to restrict their evaporation appropriately for periods in excess of a year. This has implications for short term evaluation studies and implies the need for soil moisture measurements to improve data assimilation and model initialisation. In contrast, initial conditions influencing the thermal storage have a much shorter adjustment timescale compared to soil moisture. Most models partition too much of the radiative energy at the surface into the sensible heat flux at the probable expense of the net storage heat flux.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent activity in the development of future weather data for building performance simulation follows recognition of the limitations of traditional methods, which have been based on a stationary (observed) climate. In the UK, such developments have followed on from the availability of regional climate models as delivered in UKCIP02 and recently the probabilistic projections released under UKCP09. One major area of concern is the future performance and adaptability of buildings which employ exclusively passive or low-energy cooling systems. One such method which can be employed in an integral or retrofit situation is direct or indirect evaporative cooling. The effectiveness of evaporative cooling is most strongly influenced by the wet-bulb depression of the ambient air, hence is generally regarded as most suited to hot, dry climates. However, this technology has been shown to be effective in the UK, primarily in mixed-mode buildings or as a retrofit to industrial/commercial applications. Climate projections for the UK generally indicate an increase in the summer wet-bulb depression, suggesting an enhanced potential for the application of evaporative cooling. The paper illustrates this potential by an analysis of the probabilistic scenarios released under UKCP09, together with a detailed building/plant simulation of case study building located in the South-East of England. The results indicate a high probability that evaporative cooling will still be a viable low-energy technique in the 2050s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under low latitude conditions, minimization of solar radiation within the urban environment may often be a desirable criterion in urban design. The dominance of the direct component of the global solar irradiance under clear high sun conditions requires that the street solar access must be small. It is well known that the size and proportion of open spaces has a great influence on the urban microclimate This paper is directed towards finding the interaction between urban canyon geometry and incident solar radiation. The effect of building height and street width on the shading of the street surfaces and ground for different orientations have been examined and evaluated. It is aimed to explore the extent to which these parameters affect the temperature in the street. This work is based on air and surface temperature measurements taken in different urban street canyons in EL-Oued City (hot and and climate), Algeria. In general, the results show that there are less air temperature variations compared to the surface temperature which really depends on the street geometry and sky view factor. In other words, there is a big correlation between the street geometry, sky view factor and surface temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under low latitude conditions, minimisation of solar irradiance within the urban environment may often be an important criterion in urban design. This can be achieved when the obstruction angle is large (high H/W ratio, H = height, W = width). Solar access to streets can always be decreased by increasing H/W to larger values. It is shown in this paper that the street canyon orientation (and not only the H/W ratio) has a considerable effect on solar shading and urban microclimate. The paper demonstrates through a series of shading simulation and temperature measurements that a number of useful relationships can be developed between the geometry and the microclimate of urban street canyons. These relationships are potentially helpful to assist in the formulation of urban design guidelines governing street dimensions and orientations for use by urban designers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A strong climatic warming is currently observed in the Caucasus mountains, which has profound impact on runoff generation in the glaciated Glavny (Main) Range and on water availability in the whole region. To assess future changes in the hydrological cycle, the output of a general circulation model was downscaled statistically. For the 21st century, a further warming by 4–7 °C and a slight precipitation increase is predicted. Measured and simulated meteorological variables were used as input into a runoff model to transfer climate signals into a hydrological response under both present and future climate forcings. Runoff scenarios for the mid and the end of the 21st century were generated for different steps of deglaciation. The results show a satisfactory model performance for periods with observed runoff. Future water availability strongly depends on the velocity of glacier retreat. In a first phase, a surplus of water will increase flood risk in hot years and after continuing glacier reduction, annual runoff will again approximate current values. However, the seasonal distribution of streamflow will change towards runoff increase in spring and lower flows in summer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The built environment in China is required to achieve a 50% reduction in carbon emissions by 2020 against the 1980 design standard. A particular challenge is how to maintain acceptable comfort conditions through the hot humid summers and cold desiccating winters of its continental climate regions. Fully air-conditioned sealed envelopes, often fully glazed, are becoming increasingly common in these regions. Remedial strategies involve technical refinements to the air-handling equipment and a contribution from renewable energy sources in an attempt to achieve the prescribed net reduction in energy use. However an alternative hybrid environmental design strategy is developed in this research project. It exploits observed temperate periods of weeks, days, even hours in duration to free-run an office and exhibition building configured to promote natural stack ventilation when ambient conditions permit and mechanical ventilation when conditions require it, the two modes delivered through the same physical infrastructure. The proposal is modelled in proprietary software and the methodology adopted is described. The challenge is compounded by its first practical application to an existing reinforced concrete frame originally designed to receive a highly glazed envelope. This original scheme is reviewed in comparison. Furthermore the practical delivery of the proposal value engineered out a proportion of the ventilation stacks. The likely consequence of this for the environmental performance of the building is investigated through a sensitivity study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evaluation of the quality and usefulness of climate modeling systems is dependent upon an assessment of both the limited predictability of the climate system and the uncertainties stemming from model formulation. In this study a methodology is presented that is suited to assess the performance of a regional climate model (RCM), based on its ability to represent the natural interannual variability on monthly and seasonal timescales. The methodology involves carrying out multiyear ensemble simulations (to assess the predictability bounds within which the model can be evaluated against observations) and multiyear sensitivity experiments using different model formulations (to assess the model uncertainty). As an example application, experiments driven by assimilated lateral boundary conditions and sea surface temperatures from the ECMWF Reanalysis Project (ERA-15, 1979–1993) were conducted. While the ensemble experiment demonstrates that the predictability of the regional climate varies strongly between different seasons and regions, being weakest during the summer and over continental regions, important sensitivities of the modeling system to parameterization choices are uncovered. In particular, compensating mechanisms related to the long-term representation of the water cycle are revealed, in which summer dry and hot conditions at the surface, resulting from insufficient evaporation, can persist despite insufficient net solar radiation (a result of unrealistic cloud-radiative feedbacks).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our interdisciplinary analysis is based on all available sources of information on the climate and society of Byzantium, that is textual (documentary), archaeological, environmental, climate and climate model-based evidence about the nature and extent of climate variability in the eastern Mediterranean. The key challenge was, therefore, to assess the relative influence to be ascribed to climate variability and change on the one hand, and on the other to the anthropogenic factors in the evolution of Byzantine state and society (such as invasions, changes in international or regional market demand and patterns of production and consumption, etc.). The focus of this interdisciplinary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new formulation of a pose refinement technique using ``active'' models is described. An error term derived from the detection of image derivatives close to an initial object hypothesis is linearised and solved by least squares. The method is particularly well suited to problems involving external geometrical constraints (such as the ground-plane constraint). We show that the method is able to recover both the pose of a rigid model, and the structure of a deformable model. We report an initial assessment of the performance and cost of pose and structure recovery using the active model in comparison with our previously reported ``passive'' model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the climate system has been revolutionized recently, by the development of sophisticated computer models. The predictions of such models are used to formulate international protocols, intended to mitigate the severity of global warming and its impacts. Yet, these models are not perfect representations of reality, because they remove from explicit consideration many physical processes which are known to be key aspects of the climate system, but which are too small or fast to be modelled. The purpose of this paper is to give a personal perspective of the current state of knowledge regarding the problem of unresolved scales in climate models. A recent novel solution to the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the performance of models may be improved by adding random noise to represent the unresolved processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term trends, interannual and intra-seasonal variability in the mass-balance record from Djankuat glacier, central Greater Caucasus, Russia, are related to local climate change, synoptic and large-scale anomalies in atmospheric circulation. A clear warming signal emerged in the central Greater Caucasus in the early 1990s, leading to a strong increase in ablation. In the absence of a compensating change in winter accumulation, the net mass balance of Djankuat has declined. The highest value of seasonal ablation on record was registered in the summer of 2000. At the beginning of the 21st century these trends reversed. Ablation was below average even in the summer of 2003, which was unusually warm in western Europe. Precipitation and winter accumulation were high, allowing for a partial recovery of net mass balance. The interannual variability in the components of mass balance is weakly related to the North Atlantic Oscillation (NAO) and the Scandinavian teleconnection patterns, but there is a clear link with the large-scale circulation anomalies represented by the Rossby pattern. Five synoptic categories have been identified for the ablation season of 2005, revealing a strong separation between components of radiation budget, air temperature and daily melt. Air temperature is the main control over melt. The highest values of daily ablation are related to the strongly positive NAO which forces high net radiation, and to the warm and moist advection from the Black Sea.