3 resultados para artificial membrane

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the use of a laminin coated compressed collagen gel containing corneal fibroblasts (keratocytes) as a novel scaffold to support the growth of corneal limbal epithelial stem cells. The growth of limbal epithelial cells was compared between compressed collagen gel and a clinically proven conventional substrate, denuded amniotic membrane. Following compression of the collagen gel, encapsulated keratocytes remained viable and scanning electron microscopy showed that fibres within the compressed gel were dense, homogeneous and similar in structure to those within denuded amniotic membrane. Limbal epithelial cells were successfully expanded upon the compressed collagen resulting in stratified layers of cells containing desmosome and hemidesmosome structures. The resulting corneal constructs of both the groups shared a high degree of transparency, cell morphology and cell stratification. Similar protein expression profiles for cytokeratin 3 and cytokeratin 14 and no significant difference in cytokeratin 12 mRNA expression levels by real time PCR were also observed. This study provides the first line of evidence that a laminin coated compressed collagen gel containing keratocytes can adequately support limbal epithelial cell expansion, stratification and differentiation to a degree that is comparable to the leading conventional scaffold, denuded amniotic membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experiments were designed to evaluate the biocompatibility of a plastically compressed collagen scaffold (PCCS). The ultrastructure of the PCCS was observed via scanning electron microscopy. Twenty New Zealand white rabbits were randomly divided into experimental and control groups that received corneal pocket transplantation with PCCS and an amniotic membrane, respectively. And the contralateral eye of the implanted rabbit served as the normal group. On the 1st, 7th, 14th, 21st, 30th, 60th, 90th, and 120th postoperative day, the eyes were observed via a slit lamp. On the 120th postoperative day, the rabbit eyes were enucleated to examine the tissue compatibility of the implanted stroma. The PCCS was white and translucent. The scanning electron microscopy results showed that fibers within the PCCS were densely packed and evenly arranged. No edema, inflammation, or neovascularization was observed on ocular surface under a slit lamp and few lymphocytes were observed in the stroma of rabbit cornea after histological study. In conclusion, the PCCS has extremely high biocompatibility and is a promising corneal scaffold for an artificial cornea. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.