80 resultados para approximate calculation of sums

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient method is described for the approximate calculation of the intensity of multiply scattered lidar returns. It divides the outgoing photons into three populations, representing those that have experienced zero, one, and more than one forward-scattering event. Each population is parameterized at each range gate by its total energy, its spatial variance, the variance of photon direction, and the covariance, of photon direction and position. The result is that for an N-point profile the calculation is O(N-2) efficient and implicitly includes up to N-order scattering, making it ideal for use in iterative retrieval algorithms for which speed is crucial. In contrast, models that explicitly consider each scattering order separately are at best O(N-m/m!) efficient for m-order scattering and often cannot be performed to more than the third or fourth order in retrieval algorithms. For typical cloud profiles and a wide range of lidar fields of view, the new algorithm is as accurate as an explicit calculation truncated at the fifth or sixth order but faster by several orders of magnitude. (C) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slantwise convective available potential energy (SCAPE) is a measure of the degree to which the atmosphere is unstable to conditional symmetric instability (CSI). It has, until now, been defined by parcel theory in which the atmosphere is assumed to be nonevolving and balanced, that is, two-dimensional. When applying this two-dimensional theory to three-dimensional evolving flows, these assumptions can be interpreted as an implicit assumption that a timescale separation exists between a relatively rapid timescale for slantwise ascent and a slower timescale for the development of the system. An approximate extension of parcel theory to three dimensions is derived and it is shown that calculations of SCAPE based on the assumption of relatively rapid slantwise ascent can be qualitatively in error. For a case study example of a developing extratropical cyclone, SCAPE calculated along trajectories determined without assuming the existence of the timescale separation show large SCAPE values for parcels ascending from the warm sector and along the warm front. These parcels ascend into the cloud head within which there is some evidence consistent with the release of CSI from observational and model cross sections. This region of high SCAPE was not found for calculations along the relatively rapidly ascending trajectories determined by assuming the existence of the timescale separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study global atmosphere models that are at least as accurate as the hydrostatic primitive equations (HPEs), reviewing known results and reporting some new ones. The HPEs make spherical geopotential and shallow atmosphere approximations in addition to the hydrostatic approximation. As is well known, a consistent application of the shallow atmosphere approximation requires omission of those Coriolis terms that vary as the cosine of latitude and of certain other terms in the components of the momentum equation. An approximate model is here regarded as consistent if it formally preserves conservation principles for axial angular momentum, energy and potential vorticity, and (following R. Müller) if its momentum component equations have Lagrange's form. Within these criteria, four consistent approximate global models, including the HPEs themselves, are identified in a height-coordinate framework. The four models, each of which includes the spherical geopotential approximation, correspond to whether the shallow atmosphere and hydrostatic (or quasi-hydrostatic) approximations are individually made or not made. Restrictions on representing the spatial variation of apparent gravity occur. Solution methods and the situation in a pressure-coordinate framework are discussed. © Crown copyright 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal coordinate calculations of XH4 and XH3 molecules are reviewed and discussed. It is shown that for most of these molecules the true values of the force constants in the most General Harmonic Force Field can be uniquely determined only by making use of vibration-rotation interaction constants. It is emphasized that without these extra data the GFF is not determined. The results are compared with various model force fields for these molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calculation of accurate and reliable vibrational potential functions and normal co-ordinates is discussed, for such simple polyatomic molecules as it may be possible. Such calculations should be corrected for the effects of anharmonicity and of resonance interactions between the vibrational states, and should be fitted to all the available information on all isotopic species: particularly the vibrational frequencies, Coriolis zeta constants and centrifugal distortion constants. The difficulties of making these corrections, and of making use of the observed data are reviewed. A programme for the Ferranti Mercury Computer is described by means of which harmonic vibration frequencies and normal co-ordinate vectors, zeta factors and centrifugal distortion constants can be calculated, from a given force field and from given G-matrix elements, etc. The programme has been used on up to 5 × 5 secular equations for which a single calculation and output of results takes approximately l min; it can readily be extended to larger determinants. The best methods of using such a programme and the possibility of reversing the direction of calculation are discussed. The methods are applied to calculating the best possible vibrational potential function for the methane molecule, making use of all the observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now possible to calculate the nine-dimensional rovibrational wavefunctions of sequentially bonded four-atom molecules variationally without dynamical approximation. In the case of HCCH, the simplest such molecule, many hundreds of rovibrational (J = 0, 1, 2) levels can be converged to better than 1.5 cm −1. Variational calculations of this kind are used here systematically to refine the well-known quartic valence-coordinate forcefleld of Strey and Mills [J.Mol. Spectrosc.59, 103-115 (1976)] against experimental term values up to three C-H stretch quanta for the principal and two deuterated isotopomers, yielding a new surface that reproduces the energies of all the known Σ, Π, and Δ states of these species up to the energy of two C-H stretch quanta with an rms error of 3 cm−1 . The refined forcefield is used to study the resonances associated with the accidental degeneracies (ν2 + ν4 + ν5, ν3) and (ν2 + 2ν5, ν1) in the principal isotopomer, leading to a clarification of the assignment of she experimentally detected states in the 2ν3 and 3ν3, polyads, and to the finding that vibrational Coriolis (kinetic energy) terms, rather than quartic anharmonicities in the potential, are the primary cause of the resonant interactions. Using a new cubic ab initio electric dipole field to calculate IR absorption coefficients, 24 undetected Σ and Π states of 1H12C12C1H and 5 undetected Σ states of D12C12CD are identified as candidates for experimental study, and their calculated energies and assignments are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mathematical difficulties which can arise in the force constant refinement procedure for calculating force constants and normal co-ordinates are described and discussed. The method has been applied to the methyl fluoride molecule, using an electronic computer. The best values of the twelve force constants in the most general harmonic potential field were obtained to fit twenty-two independently observed experimental data, these being the six vibration frequencies, three Coriolis zeta constants and two centrifugal stretching constants DJ and DJK, for both CH3F and CD3F. The calculations have been repeated both with and without anharmonicity corrections to the vibration frequencies. All the experimental data were weighted according to the reliability of the observations, and the corresponding standard errors and correlation coefficients of the force constants have been deduced. The final force constants are discussed briefly, and compared with previous treatments, particularly with a recent Urey-Bradley treatment for this molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is discussed for imposing any desired constraint on the force field obtained in a force constant refinement calculation. The application of this method to force constant refinement calculations for the methyl halide molecules is reported. All available data on the vibration frequencies, Coriolis interaction constants and centrifugal stretching constants of CH3X and CD3X molecules were used in the refinements, but despite this apparent abundance of data it was found that constraints were necessary in order to obtain a unique solution to the force field. The results of unconstrained calculations, and of three different constrained calculations, are reported in this paper. The constrained models reported are a Urey—Bradley force field, a modified valence force field, and a constraint based on orbital-following bond-hybridization arguments developed in the following paper. The results are discussed, and compared with previous results for these molecules. The third of the above models is found to reproduce the observed data better than either of the first two, and additional reasons are given for preferring this solution to the force field for the methyl halide molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Force constant and normal co-ordinate calculations are reported for the E species vibrations of the allene molecule. Data on the fundamental vibration frequencies of allene-h4, allene-d4 and allene-1.1-d2 and on the five experimentally determined Coriolis zeta constants of C3H4 and C3D4, were used in a force constant refinement procedure. Allowing for product and sum rules this gives 21 independent data which were used to refine to the most general harmonic force field (10 parameters) with one constraint (in the absence of any constraints the refinement was not satisfactory). The results have been used to calculate the complete ζz Coriolis interaction matrix for the allene-1.1-d2 molecule, and hence to calculate the expected rotational structure of the perpendicular bending vibrations of this molecule; the good agreement obtained with the observed spectra is a check on our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article illustrates that not all statistical software packages are correctly calculating a p-value for the classical F test comparison of two independent Normal variances. This is illustrated with a simple example, and the reasons why are discussed. Eight different software packages are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensions to the code MULTIMODE to obtain rovibrational wave functions and properties are described. An application of these new capabilities is made to a calculation of the Franck-Condon factors for photoionization of CF3 to CF3+. These calculations make use of a new, full-dimensional ab initio potential energy surface, which is also described here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The triatomic spin-rovibronic variational code RVIB3 has been extended to include the effect of two uncoupled electrons, for both (3)Sigma(-) and (3)Pi (Renner-Teller) electronic states. The spin-orbital-rotational kinetic energy is included in the usual way, via terms (J+L+S). The phenomenological terms AL.S and lambda 2/3(3S(z)(2)) are introduced to reproduce the 3 spin-orbit and spin-spin splittings, respectively. Calculations are performed to evaluate the spin-rovibronic energy levels of CCO (X) over tilde (3) Sigma(-) and CCO (A) over tilde (3) Pi for which the Born-Oppenheimer potentials are derived from high-accuracy ab initio calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J=0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of dipole-allowed absorption intensities in triatomic molecules is presented for systems with three close-lying electronic states of doublet multiplicity. Its derivation is within the framework of a recently developed variational method [CARTER, S., HANDY, N. C., PUZZARINI, C., TARRONI, R., and PALMIERI, P., 2000, Molec. Phys., 98,1967]. The method has been applied to the calculation of the infrared absorption spectrum of the C2H radical and its deuterated isotopomer for energies up to 10000 cm(-1) above the ground state, using highly accurate ab initio diabatic potential energy and dipole moment surfaces. The calculated spectra agree very well with those recorded experimentally in a neon matrix [FORNEY, D., JACOX, M. E., and THOMPSON, W. E., 1995, J. molee. Spectrosc., 170, 178] and assignments in the high energy region of the IR spectra are proposed for the first time.