4 resultados para antimicrobial methods
em CentAUR: Central Archive University of Reading - UK
Resumo:
The aim of this work was to study the effects of drying methods and conditions (i.e., ambient drying, hot air drying at 40 degrees C, vacuum drying and low-pressure superheated steam drying within the temperature range of 70-90 degrees C at an absolute pressure of 10 kPa) as well as the concentration of galangal extract on the antimicrobial activity of edible chitosan films against Staphylococcus aureus. Galangal extract was added to the film forming solution as a natural antimicrobial agent in the concentration range of 0.3-0.9 g/100 g. Fourier transform infrared (FTIR) spectra and swelling of the films were also evaluated to investigate interaction between chitosan and the galangal extract. The antimicrobial activity of the films was evaluated by the disc diffusion and viable cell count method, while the morphology of bacteria treated with the antimicrobial films was observed via transmission electron microscopy (TEM). The antimicrobial activity, swelling and functional group interaction of the antimicrobial films were found to be affected by the drying methods and conditions as well as the concentration of the galangal extract. The electron microscopic observations revealed that cell wall and cell membrane of S. aureus treated by the antimicrobial films were significantly damaged. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aim: To assess the effect of the growth promoter avilamycin on emergence and persistence of resistance in enteric bacteria in the pig. Methods and Results: Pigs ( treated with avilamycin for 3 months and controls) were challenged with multiresistant Salmonella Typhimurium DT104 and faecal counts were performed for enterococci, Escherichia coli, S. Typhimurium and Campylobacter ( before, during and 5 weeks post-treatment). Representative isolates were tested for antibiotic resistance and for the presence of resistance genes. Avilamycin-resistant Enterococci faecalis (speciated by PCR) were isolated from the treated pigs and continued to be detected for the first week after treatment had ceased. The avilamycin- resistance gene was characterized by PCR as the emtA gene and speciation by PCR. MIC profiling confirmed that more than one strain of Ent. faecalis carried this gene. There was no evidence of increased antimicrobial resistance in the E. coli, Salmonella and Campylobacter populations, although there was a higher incidence of tetB positive E. coli in the treated pigs than the controls. Conclusion: Although avilamycin selects for resistance in the native enterococci population of the pig, no resistant isolates were detected beyond 1 week post-treatment. This suggests that resistant isolates were unable to persist once selective pressure was removed and were out-competed by the sensitive microflora. Significance and Impact of the Study: Our data suggest the risk of resistant isolates becoming carcass contaminants and infecting humans could be minimized by introducing a withdrawal period after using avilamycin and prior to slaughter.
Resumo:
We investigate the properties of an antimicrobial surfactant-like peptide (Ala)6(Arg), A6R, containing a cationic headgroup. The interaction of this peptide with zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the small-angle X-ray scattering profile is observed: the Bragg peaks from the DPPC bilayers in the vesicle walls are eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis.
Resumo:
Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.