72 resultados para anticancer agents
em CentAUR: Central Archive University of Reading - UK
Resumo:
The discovery of new molecular targets and the subsequent development of novel anticancer agents are opening new possibilities for drug combination therapy as anticancer treatment. Polymer-drug conjugates are well established for the delivery of a single therapeutic agent, but only in very recent years their use has been extended to the delivery of multi-agent therapy. These early studies revealed the therapeutic potential of this application but raised new challenges (namely, drug loading and drugs ratio, characterisation, and development of suitable carriers) that need to be addressed for a successful optimisation of the system towards clinical applications.
Resumo:
Of the three classes of true phosphoinositide (PI) 3-kinases, the class II subdivision, which consists of three isoforms, PI3K-C2alpha, PI3K-C2beta and PI3K-C2gamma, is the least well understood. There are a number of reasons for this. This class of PI 3-kinase was identified exclusively by PCR and homology cloning approaches and not on the basis of cellular function. Like class I PI 3-kinases, class II PI 3-kinases are activated by diverse receptor types. To complicate the elucidation of class II PI 3-kinase function further, their in vitro substrate specificity is intermediate between the receptor activated class I PI 3-kinases and the housekeeping class III PI 3-kinase. The class II PI 3-kinases are inhibited by the two commonly used PI 3-kinase family selective inhibitors, wortmannin and LY294002, and there are no widely available, specific inhibitors for the individual classes or isoforms. Here the current state of understanding of class II PI 3-kinase function is reviewed, followed by an appraisal as to whether there is enough evidence to suggest that pharmaceutical companies, who are currently targeting the class I PI 3-kinases in an attempt to generate anticancer agents, should also consider targeting the class II PI 3-kinases.
Resumo:
The formation of new blood vessels from the pre-existing vasculature (angiogenesis) is a crucial stage in cancer progression and, indeed, angiogenesis inhibitors are now used as anticancer agents, clinically. Here we have explored the potential of flavonoid derivatives as antiangiogenic agents. Specifically, we have synthesised methoxy and 4-thio derivatives of the natural flavones quercetin and luteolin, two of which (4-thio quercetin and 4-thio luteolin) had never been previously reported. Seven of these compounds showed significant (P<0.05) antiangiogenic activity in an in vitro scratch assay. Their activity ranged from an 86% inhibition of the vascular endothelium growth factor (VEGF)-stimulated migration (observed for methoxyquercetin at 10 µM and for luteolin at 1 µM) to a 36% inhibition (for thiomethoxy quercetin at 10 µM). Western blotting studies showed that most (4 out of 7) compounds inhibited phosphorylation of the VEGF receptor-2 (VEGFR2), suggesting that the antiangiogenic activity was due to an interference with the VEGF/VEGFR2 pathway. Molecular modelling studies looking at the affinity of our compounds towards VEGFR and/or VEGF confirmed this hypothesis, and indeed the compound with the highest antiangiogenic activity (methoxyquercetin) showed the highest affinity towards VEGFR and VEGF. As reports from others have suggested that structurally similar compounds can elicit biological responses via a non-specific, promiscuous membrane perturbation, potential interactions of the active compounds with a model lipid bilayer were assessed via DSC. Luteolin and its derivatives did not perturb the model membrane even at concentrations 10 times higher than the biologically active concentration and only subtle interactions were observed for quercetin and its derivatives. Finally, cytotoxicity assessment of these flavonoid derivatives against MCF-7 breast cancer cells demonstrated also a direct anticancer activity albeit at generally higher concentrations than those required for an antiangiogenic effect (10 fold higher for the methoxy analogues). Taken together these results show promise for flavonoid derivatives as antiangiogenic agents.
Resumo:
Acridine derivatives can inhibit a variety of nuclear enzymes by binding or intercalating to DNA. This class of compounds is of great interest in the development of novel anticancer agents. Despite the availability of crystallographic data for some of the compounds complexed with DNA, uncertainties remain about the mechanisms of action, binding preferences and biological targets. To investigate the intercalation of several acridine derivatives, a variety of techniques are being employed. Single-crystal X-ray diffraction is being used to determine the high resolution three-dimensional structure of short sequences of quadruplex telomeric DNA with bound drug. This will be compared to the effect of drug binding to long segments of double-stranded DNA using fibre diffraction, with neutron diffraction studies planned to analyse the hydrogen bonding patterns of the DNA-drug complexes. Small-angle neutron scattering (SANS) will also be applied to study drug binding to both short and long sequences of quadruplex and double-stranded DNA in solution. Initial SANS measurements of the telomeric repeat d(TGGGGT) imply that this hexamer is present as a quadruplex. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.
Resumo:
Would a research assistant - who can search for ideas related to those you are working on, network with others (but only share the things you have chosen to share), doesn’t need coffee and who might even, one day, appear to be conscious - help you get your work done? Would it help your students learn? There is a body of work showing that digital learning assistants can be a benefit to learners. It has been suggested that adaptive, caring, agents are more beneficial. Would a conscious agent be more caring, more adaptive, and better able to deal with changes in its learning partner’s life? Allow the system to try to dynamically model the user, so that it can make predictions about what is needed next, and how effective a particular intervention will be. Now, given that the system is essentially doing the same things as the user, why don’t we design the system so that it can try to model itself in the same way? This should mimic a primitive self-awareness. People develop their personalities, their identities, through interacting with others. It takes years for a human to develop a full sense of self. Nobody should expect a prototypical conscious computer system to be able to develop any faster than that. How can we provide a computer system with enough social contact to enable it to learn about itself and others? We can make it part of a network. Not just chatting with other computers about computer ‘stuff’, but involved in real human activity. Exposed to ‘raw meaning’ – the developing folksonomies coming out of the learning activities of humans, whether they are traditional students or lifelong learners (a term which should encompass everyone). Humans have complex psyches, comprised of multiple strands of identity which reflect as different roles in the communities of which they are part – so why not design our system the same way? With multiple internal modes of operation, each capable of being reflected onto the outside world in the form of roles – as a mentor, a research assistant, maybe even as a friend. But in order to be able to work with a human for long enough to be able to have a chance of developing the sort of rich behaviours we associate with people, the system needs to be able to function in a practical and helpful role. Unfortunately, it is unlikely to get a free ride from many people (other than its developer!) – so it needs to be able to perform a useful role, and do so securely, respecting the privacy of its partner. Can we create a system which learns to be more human whilst helping people learn?
Resumo:
We developed a family of polymer-drug conjugates carrying the combination of the anticancer agent epirubicin (EPI) and nitric oxide (NO). EPI-PEG-(NO)8, carrying the highest content of NO, displayed greater activity in Caco-2 cells while it decreased toxicity against endothelium cells and cardiomyocytes with respect to free EPI. FACS and confocal microscopy confirmed conjugates internalization. Light scattering showed formation of micelle whose size correlated with internalization rate. EPI-PEG-(NO)8 showed increased bioavailability in mice compared to free EPI.
Resumo:
An isolate of Gliocladium virens from disease affected soil in a commercial tomato greenhouse proved highly antagonistic to Fusarium oxysporum f.sp. lycopersici, used together with an isolate of the nematophagus fungus Verticillium chlamydosporium. Significant disease control was obtained when young mycelial preparation (on a food-base culture) of the G. virens together with V. chlamydosporium was applied in potting medium. Similar results were observed when a Trichoderma harzianum isolate was treated in combination with the V. chlamydosporium isolate. Most promising, in terms of minimizing the Fusarium wilt of tomato incidence, was also the effect of the bacteria associated with entomopathogenic nematodes (Steinernema spp.), Pseudomonas oryzihabitans and Xenorhabdus nematophilus.
Resumo:
A new family of antimony sulfides, incorporating the macrocyclic tetramine 1,4,8,11-tetraazacyclotetradecane ( cyclam), has been prepared by a hydrothermal method. [C10N4H26][Sb4S7] (1), [Ni(C10N4H24)][Sb4S7] (2), and [Co(C10N4H24)](x)[C10N4H26](1-x)[Sb4S7] (0.08 <= x <= 0.74) (3) have been characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetry, and analytical electron microscopy. All three materials possess the same novel three-dimensional Sb4S72- framework, constructed from layers of parallel arrays of Sb4S84- chains stacked at 90 to one another. In 1, doubly protonated macrocyclic cations reside in the channel structure of the antimonysulfide framework. In 2 and 3, the cyclam acts as a ligand, chelating the divalent transition- metal cation. Analytical and X-ray diffraction data indicate that the level of metal incorporation in 2 is effectively complete, whereas in 3, both metalated and nonmetalated forms of the macrocycle coexist within the structure.
Resumo:
Addition of 25 mM calcium chloride to soy milk reduced pH, increased ionic calcium and caused it to coagulate. The effects of different chelating agents were investigated on selected physicochemical properties of soy milk and on preventing coagulation. The soy milks were then pasteurised to examine how heat treatment changed some of these properties as well as to evaluate their effects on heat stability. Sediment formation and susceptibility to coagulation could be reduced by decreasing ionic calcium and increasing pH. To achieve this, the most effective chelating agents were tri-sodium citrate and disodium hydrogen phosphate. These chelating agents also reduce absolute viscosity and particle size. Sodium hexa meta phosphate was also effective, but less so; it reduced ionic calcium but had a less noticeable effect on pH. The disodium salt of ethylenediamine tetraacetic acid was not effective, as it decreased the pH of soy milk. Ionic calcium and pH are useful indicators of heat stability of calcium-fortified soy beverages. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Lactoperoxidase (LP) exerts antimicrobial effects in combination with H2O2 and either thiocyanate (SCN-) or a halide (e. g., I-). Garlic extract in the presence of ethanol has also been used to activate the LP system. This study aimed to determine the effects of 3 LP activation systems (LP+SCN-+H2O2; LP+I-+H2O2; LP + garlic extract + ethanol) on the growth and activity of 3 test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus). Sterilized milk was used as the reaction medium, and the growth pattern of the organisms and a range of keeping quality (KQ) indicators (pH, titratable acidity, ethanol stability, clot on boiling) were monitored during storage at the respective optimum growth temperature for each organism. The LP+I-+H2O2 system reduced bacterial counts below the detection limit shortly after treatment for all 3 organisms, and no bacteria could be detected for the duration of the experiment (35 to 55 h). The KQ data confirmed that the milk remained unspoiled at the end of the experiments. The LP + garlic extract + ethanol system, on the other hand, had no effect on the growth or KQ with P. aeruginosa, but showed a small retardation of growth of the other 2 organisms, accompanied by small increases (5 to 10 h) in KQ. The effects of the LP+SCN-+H2O2 system were intermediate between those of the other 2 systems and differed between organisms. With P. aeruginosa, the system exerted total inhibition within 10 h of incubation, but the bacteria regained viability after a further 5 h, following a logarithmic growth curve. This was reflected in the KQ indicators, which implied an extension of 15 h. With the other 2 bacterial species, LP+SCN-+H2O2 exerted an obvious inhibitory effect, giving a lag phase in the growth curve of 5 to 10 h and KQ extension of 10 to 15 h. When used in combination, I- and SCN- displayed negative synergy.