22 resultados para anisotropic finite-size scaling
em CentAUR: Central Archive University of Reading - UK
Resumo:
We unfold a profound relationship between the dynamics of finite-size perturbations in spatially extended chaotic systems and the universality class of Kardar-Parisi-Zhang (KPZ). We show how this relationship can be exploited to obtain a complete theoretical description of the bred vectors dynamics. The existence of characteristic length/time scales, the spatial extent of spatial correlations and how to time it, and the role of the breeding amplitude are all analyzed in the light of our theory. Implications to weather forecasting based on ensembles of initial conditions are also discussed.
Resumo:
A partial phase diagram is constructed for diblock copolymer melts using lattice-based Monte Carlo simulations. This is done by locating the order-disorder transition (ODT) with the aid of a recently proposed order parameter and identifying the ordered phase over a wide range of copolymer compositions (0.2 <= f <= 0.8). Consistent with experiments, the disordered phase is found to exhibit direct first-order transitions to each of the ordered morphologies. This includes the spontaneous formation of a perforated-lamellar phase, which presumably forms in place of the gyroid morphology due to finite-size and/or nonequilibrium effects. Also included in our study is a detailed examination of disordered cylinder-forming (f=0.3) diblock copolymers, revealing a substantial degree of pretransitional chain stretching and short-range order that set in well before the ODT, as observed previously in analogous studies on lamellar-forming (f=0.5) molecules. (c) 2006 American Institute of Physics.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.
Resumo:
The phase diagram for diblock copolymer melts is evaluated from lattice-based Monte Carlo simulations using parallel tempering, improving upon earlier simulations that used sequential temperature scans. This new approach locates the order-disorder transition (ODT) far more accurately by the occurrence of a sharp spike in the heat capacity. The present study also performs a more thorough investigation of finite-size effects, which reveals that the gyroid (G) morphology spontaneously forms in place of the perforated-lamellar (PL) phase identified in the earlier study. Nevertheless, there still remains a small region where the PL phase appears to be stable. Interestingly, the lamellar (L) phase next to this region exhibits a small population of transient perforations, which may explain previous scattering experiments suggesting a modulated-lamellar (ML) phase.
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
The formation of complexes in solutions of oppositely charged polyions has been studied by Monte Carlo simulations. The amount as well as the length, and thus, the absolute charge of one of the polyions have been varied. There is an increasing tendency to form large clusters as the excess of one kind of polyion decreases. When all polyions have the same length, this tendency reaches a maximum near, but off, equivalent amounts of the two types of polyions. When one kind of polyion is made shorter, the propensity to form large clusters decreases and the fluctuations in cluster charge increases. Simple free-energy expressions have been formulated on the basis of a set of simple rules that help rationalize the observations. By calculating cluster distributions in both grand canonical and canonical ensembles, it has been possible to show the extent of finite-size effects in the simulations.
Resumo:
In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.
Resumo:
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.
Resumo:
The effects of uniform straining and shearing on the stability of a surface quasi-geostrophic temperature filament are investigated. Straining is shown to stabilize perturbations for wide filaments but only for a finite time until the filament thins to a critical width, after which some perturbations can grow. No filament can be stabilized in practice, since there are perturbations that can grow large for any strain rate. The optimally growing perturbations, defined as solutions that reach a certain threshold amplitude first, are found numerically for a wide range of parameter values. The radii of the vortices formed through nonlinear roll-up are found to be proportional to θ/s, where θ is the temperature anomaly of the filament and s the strain rate, and are not dependent on the initial size of the filament. Shearing is shown to reduce the normal-mode growth rates, but it cannot stabilize them completely when there are temperature discontinuities in the basic state; smooth filaments can be stabilized completely by shearing and a simple scaling argument provides the shear rate required. Copyright © 2010 Royal Meteorological Society
Resumo:
The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ("Kleiber's law"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.
Resumo:
Over many millions of years of independent evolution, placental, marsupial and monotreme mammals have diverged conspicuously in physiology, life history and reproductive ecology. The differences in life histories are particularly striking. Compared with placentals, marsupials exhibit shorter pregnancy, smaller size of offspring at birth and longer period of lactation in the pouch. Monotremes also exhibit short pregnancy, but incubate embryos in eggs, followed by a long period of post-hatching lactation. Using a large sample of mammalian species, we show that, remarkably, despite their very different life histories, the scaling of production rates is statistically indistinguishable across mammalian lineages. Apparently all mammals are subject to the same fundamental metabolic constraints on productivity, because they share similar body designs, vascular systems and costs of producing new tissue.
Resumo:
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by
Resumo:
Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.
Resumo:
Rensch’s rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry,life-history theory, and energetics. The key features are thatfemale group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding,death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pinnipeds(seals and sea lions), do or do not conform to Rensh’s rule.