3 resultados para animal physiology,
em CentAUR: Central Archive University of Reading - UK
Resumo:
Inflammatory bowel disease (IBD) is a common cause of chronic large bowel diarrhoea in cats. Although the aetiology of IBD is unknown, an immune-mediated response to a luminal antigen is thought to be involved. As knowledge concerning the colonic microflora of cats is limited and requires further investigation, the purpose of this study was to determine the presence of specific bacterial groups in normal and IBD cats, and the potential role they play in the health of the host. Total bacterial populations, Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum subgp., Lactobacillus-Enterococcus subgp. and Desulfovibrio spp. were enumerated in 34 healthy cats and 11 IBD cats using fluorescence in situ hybridisation. The study is one of the first to show the presence of Desulfovibrio in cats. Total bacteria, Bifidobacterium spp. and Bacteroides spp. counts were all significantly higher in healthy cats when compared with IBD cats, whereas Desulfovibrio spp. (producers of toxic sulphides) numbers were found to be significantly higher in colitic cats. The information obtained from this study suggests that modulation of bacterial flora by increasing bifidobacteria and decreasing Desulfovibrio spp. may be beneficial to cats with IBD. Dietary intervention may be an important aspect of their treatment.
Resumo:
The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco’s modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher’s protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p < 0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.
Resumo:
Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24-h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched-chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched-chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.