44 resultados para analgesic and anti-inflamatory activity
em CentAUR: Central Archive University of Reading - UK
Resumo:
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Aims: To investigate the effect of various carbon sources on the production of extracellular antagonistic compounds against two Escherichia coli strains and Salmonella enterica serotype Typhimurium by three canine-derived lactobacilli strains. Methods and Materials: Cell-free preparations, pH neutralized, were used in antibiotic disc experiments as an initial screening. The bacteria/carbohydrate combinations that showed inhibition of the growth of those pathogens, were further investigated in batch co-culture experiments. The cell-free supernatants of the cultures, that decreased the population number of the pathogens in the co-culture experiments to log CFU ml(-1) less than or equal to 4, were tested for inhibition of the pathogens in pure cultures at neutral and acidic pH. Conclusions: The results showed that the substrate seems to affect the production of antimicrobial compounds and this effect could not just be ascribed to the ability of the bacteria to grow in the various carbon sources. L. mucosae, L. acidophilus and L. reuteri, when grown in sugar mixtures consisting of alpha-glucosides (Degree of Polymerization (DP) 1-4) could produce antimicrobial compounds active against all three pathogens in vitro. This effect could not be attributed to a single ingredient of those sugar mixtures and was synergistic. This inhibition had a dose-response characteristic and was more active at acidic pH. Significance and Impact of the Study: Knowledge of the effect that the carbon source has on the production of antimicrobial compounds by gut-associated lactobacilli allows the rational design of prebiotic/probiotic combinations to combat gastrointestinal pathogens.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
One hundred and nine lactic acid bacterial strains (56 bifidobacteria-like and 53 lactobacilli-like) were isolated from faecal samples donated by healthy elderly individuals (>65 years old). Isolates were identified to species level by phenotypic analysis (by API) and by 16S rDNA sequencing. Eleven species of Lactobacillus and six species of Bifidobacterium were identified. The most frequently isolated lactobacillus was L. fermentum and the most frequently isolated bifidobacterium was closely related to B. infantis by 16S rDNA sequence alignment. The isolates were characterized for their antimicrobial activity against Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC) and Campylobacter jejuni. The lactobacilli displayed variations in their antimicrobial activity with few strains showing inhibitory activity against all pathogens. The bifidobacteria displayed higher levels of inhibitory activity against C. jejuni and Cl. difficile than against the E. coli strains. Keywords: Lactobacillus, Bifidobacterium, elderly, gastrointestinal microbiota, inhibition, Clostridium difficile, enteropathogenic Escherichia coli (EPEC), verocytotoxigenic E. coli (VTEC), Campylobacter jejuni.
Resumo:
The benzyl-substituted unbridged titanocene bis-[(p-methoxybenzyl)cyclopentadienyl] titanium(IV) dichloride (Titanocene Y) was tested in vitro against human renal cancer cells (Caki-1), in which it showed an IC50 value of 36 x 10(-6) mol/l. Titanocene Y was then given in vivo in doses of 10, 20, 30, 40 and 50 mg/kg on 5 consecutive days to Caki-1-bearing mice, and it showed concentration-dependent and statistically significant tumor growth reduction with respect to a solvent-treated control cohort. The maximum tolerable dose of Titanocene Y was determined to be 40 mg/kg and it showed significantly better tumor volume growth reduction than cisplatin given at a dose of 2 mg/kg. This superior activity of Titanocene Y with respect to cisplatin will hopefully lead to clinical tests against metastatic renal cell cancer in the near future.
Resumo:
Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.
Resumo:
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Resumo:
With many cancers showing resistance to current chemotherapies, the search for novel anti-cancer agents is attracting considerable attention. Natural flavonoids have been identified as useful leads in such programmes. However, since an in-depth understanding of the structural requirements for optimum activity is generally lacking, further research is required before the full potential of flavonoids as anti-proliferative agents can be realised. Herein a broad library of 76 methoxy and hydroxy flavones, and their 4-thio analogues, was constructed and their structure-activity relationships for anti-proliferative activity against the breast cancer cell lines MCF-7 (ER+ve), MCF-7/DX (ER+ve, anthracycline resistant) and MDA-MB-231 (ER-ve) were probed. Within this library, 42 compounds were novel, and all compounds were afforded in good yields and > 95% purity. The most promising lead compounds, specifically the novel hydroxy 4-thioflavones 15f and 16f, were further evaluated for their anti-proliferative activities against a broader range of cancer cell lines by the National Cancer Institute (NCI), USA and displayed significant growth inhibition profiles (e.g Compound-15f: MCF-7 (GI50 = 0.18 μM), T-47D (GI50 = 0.03 μM) and MDA-MB-468 (GI50 = 0.47 μM) and compound-16f: MCF-7 (GI50 = 1.46 μM), T-47D (GI50 = 1.27 μM) and MDA-MB-231 (GI50 = 1.81 μM). Overall, 15f and 16f exhibited 7-46 fold greater anti-proliferative potency than the natural flavone chrysin (2d). A systematic structure-activity relationship study against the breast cancer cell lines highlighted that free hydroxyl groups and the B-ring phenyl groups were essential for enhanced anti-proliferative activities. Substitution of the 4-C=O functionality with a 4-C=S functionality, and incorporation of electron withdrawing groups at C4’ of the B-ring phenyl, also enhanced activity. Molecular docking and mechanistic studies suggest that the anti-proliferative effects of flavones 15f and 16f are mediated via ER-independent cleavage of PARP and downregulation of GSK-3β for MCF-7 and MCF-7/DX cell lines. For the MDA-MB-231 cell line, restoration of the wild-type p53 DNA binding activity of mutant p53 tumour suppressor gene was indicated.
Resumo:
There is a recent interest to use inorganic-based magnetic nanoparticles as a vehicle to carry biomolecules for various biophysical applications, but direct attachment of the molecules is known to alter their conformation leading to attenuation in activity. In addition, surface immobilization has been limited to monolayer coverage. It is shown that alternate depositions of negatively charged protein molecules, typically bovine serum albumin (BSA) with a positively charged aminocarbohydrate template such as glycol chitosan (GC) on magnetic iron oxide nanoparticle surface as a colloid, are carried out under pH 7.4. Circular dichroism (CD) clearly reveals that the secondary structure of the entrapped BSA sequential depositions in this manner remains totally unaltered which is in sharp contrast to previous attempts. Probing the binding properties of the entrapped BSA using small molecules (Site I and Site II drug compounds) confirms for the first time the full retention of its biological activity as compared with native BSA, which also implies the ready accessibility of the entrapped protein molecules through the porous overlayers. This work clearly suggests a new method to immobilize and store protein molecules beyond monolayer adsorption on a magnetic nanoparticle surface without much structural alteration. This may find applications in magnetic recoverable enzymes or protein delivery.
Resumo:
In previous work we have found that Cp2TiCl2 and its corresponding deriv. of tamoxifen, Titanocene tamoxifen, show an unexpected proliferative effect on hormone dependent breast cancer cells MCF-7. In order to check if this behavior is a general trend for titanocene derivs. we have tested two other titanocene derivs., Titanocene Y and Titanocene K, on this cell line. Interestingly, these two titanocene complexes behave in a totally different manner. Titanocene K is highly proliferative on MCF-7 cells even at low concns. (0.5 .mu.M), thus behave almost similarly to Cp2TiCl2. This proliferative effect is also obsd. in the presence of bovine serum albumin (BSA). In contrast, Titanocene Y alone has almost no effect on MCF-7 at a concn. of 10 .mu.M, but exhibits a significant dose dependent cytotoxic effect of up to 50% when incubated with BSA (20-50 .mu.g/mL). This confirms the crucial role played by the binding to serum proteins in the expression of the in vivo, cytotoxicity of the titanocene complexes. From the hydridolithiation reaction of 6-p-anisylfulvene with LiBEt3H followed by transmetallation with iron dichloride [bis-[(p-methoxy-benzyl)cyclopentadienyl]iron(II)] (Ferrocene Y) was synthesized. This complex, which was characterized by single crystal X-ray diffraction, contains the robust ferrocenyl unit instead of Ti assocd. with easily leaving groups such as chlorine and shows only a modest cytotoxicity against MCF-7 or MDA-MB-231 cells.
Resumo:
Fibre, crude protein and tannin concentrations were measured in browse species from the semi-arid region of Northeast Brazil during the dry and wet seasons. The effects of oven-, sun- and shade-drying and of urea treatment were also determined. Crude protein (CP) content varied from 103 to 161 g/kg dry matter (DM) and the browses had similar CP content in the two seasons (during 2002) (102-161 and 107-153 g/kg DM in the wet and dry seasons, respectively). Total tannin concentrations ranged from 13 to 201 g/kg DM amongst the browses and were higher in the dry season. A 30-d treatment with urea reduced extractable tannins significantly (P < 0.05). The urea treatment was also most effective at reducing the in vitro effects of tannins compared to the other drying treatments. This was demonstrated by measuring the effect of polyethylene glycol (PEG) on gas production. Addition of PEG increased gas production of oven- (81.4%), sun- (78.5%) and shade-dried (76.7%) samples much more compared to urea treated samples (10.9%). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Gas-phase rate coefficients for the atmospherically important reactions of NO3, OH and O-3 are predicted for 55 alpha,beta-unsaturated esters and ketones. The rate coefficients were calculated using a correlation described previously [Pfrang, C., King, M.D., C. E. Canosa-Mas, C.E., Wayne, R.P., 2006. Atmospheric Environment 40, 1170-1179]. These rate coefficients were used to extend structure-activity relations for predicting the rate coefficients for the reactions of NO3, OH or O-3 with alkenes to include alpha,beta-unsaturated esters and ketones. Conjugation of an alkene with an alpha,beta-keto or alpha,beta-ester group will reduce the value of a rate coefficient by a factor of similar to 110, similar to 2.5 and similar to 12 for reaction with NO3, OH or O-3, respectively. The actual identity of the alkyl group, R, in -C(O)R or -C(O)OR has only a small influence. An assessment of the reliability of the SAR is given that demonstrates that it is useful for reactions involving NO3 and OH, but less valuable for those of O-3 or peroxy nitrate esters. (c) 2006 Elsevier Ltd. All rights reserved.