2 resultados para all permanent magnet
em CentAUR: Central Archive University of Reading - UK
Resumo:
The physiology and growth of plasmid-bearing Bacillus subtilis carrying plasmid pPFF1, the non-transformed host, and cells after loss of the plasmid (so-called plasmid-cured cells) were investigated. It was found that, following plasmid loss, cells exhibited phenotypic characteristics different from those of the non-transformed host strains. Compared to plasmid-bearing cells and non-transformed host cells, an approximate 25% increase in the maximum specific growth rate and a more rapid increase in total RNA per unit cell mass were observed in plasmid-cured cells. The total enthalpy associated with irreversible denaturation events was determined in whole cells by differential scanning calorimetry. This showed higher enthalpies for plasmid-cured cells compared with the non-transformed host, which suggests increased ribosome numbers. The result from cellular DNA hybridisation suggests that there was no direct evidence of plasmid integration into the host chromosome. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.