5 resultados para algebraic model

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The implications of whether new surfaces in cutting are formed just by plastic flow past the tool or by some fracturelike separation process involving significant surface work, are discussed. Oblique metalcutting is investigated using the ideas contained in a new algebraic model for the orthogonal machining of metals (Atkins, A. G., 2003, "Modeling Metalcutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems," Int. J. Mech. Sci., 45, pp. 373–396) in which significant surface work (ductile fracture toughnesses) is incorporated. The model is able to predict explicit material-dependent primary shear plane angles and provides explanations for a variety of well-known effects in cutting, such as the reduction of at small uncut chip thicknesses; the quasilinear plots of cutting force versus depth of cut; the existence of a positive force intercept in such plots; why, in the size-effect regime of machining, anomalously high values of yield stress are determined; and why finite element method simulations of cutting have to employ a "separation criterion" at the tool tip. Predictions from the new analysis for oblique cutting (including an investigation of Stabler's rule for the relation between the chip flow velocity angle C and the angle of blade inclination i) compare consistently and favorably with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified simplified model based problem with parameter updating in such a manner that the correct solution of the original nonlinear problem is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified linear quadratic model based problem with parameter updating in such a manner that the correct solution of the original non-linear problem is achieved. The resulting algorithm has a particular advantage in that the solution is achieved without the need to solve the differential algebraic equations . Convergence aspects are discussed and a simulation example is described which illustrates the performance of the technique. 1. Introduction When modelling industrial processes often the resulting equations consist of coupled differential and algebraic equations (DAEs). In many situations these equations are nonlinear and cannot readily be directly reduced to ordinary differential equations.