33 resultados para air temperature and relative humidity

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simulation of the earth's clear-sky long-wave radiation budget is used to examine the dependence of clear-sky outgoing long-wave radiation (OLR) on surface temperature and relative humidity. the simulation uses the European Centre for Medium-Range Weather Forecasts global reanalysed fields to calculate clear-sky OLR over the period from January 1979 to December 1993, thus allowing the seasonal and interannual time-scales to be resolved. the clear-sky OLR is shown to be primarily dependent on temperature changes at high latitudes and on changes in relative humidity at lower latitudes. Regions exhibiting a ‘super-greenhouse’ effect are identified and are explained by considering the changes in the convective regime associated with the Hadley circulation over the seasonal cycle, and with the Walker circulation over the interannual time-scale. the sensitivity of clear-sky OLR to changes in relative humidity diminishes with increasing relative humidity. This is explained by the increasing saturation of the water-vapour absorption bands with increased moisture. By allowing the relative humidity to vary in specified vertical slabs of the troposphere over an interannual time-scale it is shown that changes in humidity in the mid troposphere (400 to 700 hPa) are of most importance in explaining clear-sky OLR variations. Relative humidity variations do not appear to affect the positive thermodynamic water-vapour feedback significantly in response to surface temperature changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper fully describes a nation-wide field study on building thermal environment and thermal comfort of occupant, which was carried out in summer 2005 and in winter 2006 respectively in China, illustrating the adaptive strategies adopted by occupants in domestic buildings in China. According to the climate division in China, the buildings in Beijing (BJ), Shanghai (SH), Wuhan (WH) and Chongqing (CQ), Guangzhou (GZ), Kunming (KM), were selected as targets which are corresponding to cold zone, hot summer and cold winter zone (SWC-SH, WH, CQ), hot summer and warm winter zone and temperate zone, respectively. The methodology used in the field study is the combination of subjective questionnaire regarding thermal sensation and adaptive approaches and physical environmental monitoring including indoor air temperature and relative humidity. A total of 1671 subjects participate in this investigation with more than 80% response rate in all surveyed cities. Both physiological and non-physiological factors (behavioural and psychological adaptations) have been analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination = 0.97 and root mean square error = 1.5 °C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the “thermal” (near-surface air temperature) and “wind” (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the “thermal” forcing, whereas it is more due to the “wind” forcing in the North Pacific; in the Southern Ocean, the “thermal” and “wind” forcing have a comparable influence. In the ocean adjacent to Antarctica the “thermal” forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the “wind” forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the “thermal” and “wind” forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the “thermal” forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of two different coupled cirrus microphysics-radiation parameterizations on the zonally averaged temperature and humidity biases in the tropical tropopause layer (TTL) of a Met Office climate model configuration is assessed. One parameterization is based on a linear coupling between a model prognostic variable, the ice mass mixing ratio, qi, and the integral optical properties. The second is based on the integral optical properties being parameterized as functions of qi and temperature, Tc, where the mass coefficients (i.e. scattering and extinction) are parameterized as nonlinear functions of the ratio between qi and Tc. The cirrus microphysics parameterization is based on a moment estimation parameterization of the particle size distribution (PSD), which relates the mass moment (i.e. second moment if mass is proportional to size raised to the power of 2 ) of the PSD to all other PSD moments through the magnitude of the second moment and Tc. This same microphysics PSD parameterization is applied to calculate the integral optical properties used in both radiation parameterizations and, thus, ensures PSD and mass consistency between the cirrus microphysics and radiation schemes. In this paper, the temperature-non-dependent and temperature-dependent parameterizations are shown to increase and decrease the zonally averaged temperature biases in the TTL by about 1 K, respectively. The temperature-dependent radiation parameterization is further demonstrated to have a positive impact on the specific humidity biases in the TTL, as well as decreasing the shortwave and longwave biases in the cloudy radiative effect. The temperature-dependent radiation parameterization is shown to be more consistent with TTL and global radiation observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a tendency to reduce ventilation rates and natural or hybrid ventilation systems to ensure the conservation of energy in school buildings. However, high indoor pollutant concentration, due to natural or hybrid ventilation systems may have a significant adverse impact on the health and academic performance of pupils and students. Reviewed evidence shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area, eventually indicating that CO2 concentrations can rise to very high levels (about 4000 ppm) in classrooms during occupancy periods. In South Africa’s naturally ventilated classrooms, it is not clear whether the environmental conditions are conducive for learning. In addition, natural ventilation will be minimized given the fact that in cold, wet or windy weather, doors and windows will commonly remain closed. Evidence from literature based studies indicates that the significance of ventilation techniques is not understood satisfactorily and additional information concerning naturally ventilated schools has to be provided for better design and policy formulation. To develop a thorough understanding of the environments in classrooms, many other parameters have to be considered as well, such as outdoor air quality, CO2 concentrations, temperature and relative humidity and safety issues that may be important drawbacks for naturally ventilated schools. The aim of this paper is to develop a conceptual understanding of methods that can be implemented to assess the effectiveness of naturally ventilated classrooms in Gauteng, South Africa. A theoretical concept with an embedded practical methodology have been proposed for the research programme to investigate the relationship between ventilation rates and learning in schools in Gauteng , a province in South Africa. It is important that existing and future school buildings must include adequate outdoor ventilation, control of moisture, and avoidance of indoor exposures to microbiologic and chemical substances considered likely to have adverse effects in South Africa. Adequate ventilation in classrooms is necessary to reduce and/or eradicate the transmission of indoor pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously placed the solar contribution to recent global warming in context using observations and without recourse to climate models. It was shown that all solar forcings of climate have declined since 1987. The present paper extends that analysis to include the effects of the various time constants with which the Earth’s climate system might react to solar forcing. The solar input waveform over the past 100 years is defined using observed and inferred galactic cosmic ray fluxes, valid for either a direct effect of cosmic rays on climate or an effect via their known correlation with total solar irradiance (TSI), or for a combination of the two. The implications, and the relative merits, of the various TSI composite data series are discussed and independent tests reveal that the PMOD composite used in our previous paper is the most realistic. Use of the ACRIM composite, which shows a rise in TSI over recent decades, is shown to be inconsistent with most published evidence for solar influences on pre-industrial climate. The conclusions of our previous paper, that solar forcing has declined over the past 20 years while surface air temperatures have continued to rise, are shown to apply for the full range of potential time constants for the climate response to the variations in the solar forcings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key climate feedbacks due to water vapor and clouds rest largely on how relative humidity R changes in a warmer climate, yet this has not been extensively analyzed in models. General circulation models (GCMs) from the CMIP3 archive and several higher resolution atmospheric GCMs examined here generally predict a characteristic pattern of R trend with global temperature that has been reported previously in individual models, including increase around the tropopause, decrease in the tropical upper troposphere, and decrease in midlatitudes. This pattern is very similar to that previously reported for cloud cover in the same GCMs, confirming the role of R in controlling changes in simulated cloud. Comparing different models, the trend in each part of the troposphere is approximately proportional to the upward and/or poleward gradient of R in the present climate. While this suggests that the changes simply reflect a shift of the R pattern upward with the tropopause and poleward with the zonal jets, the drying trend in the subtropics is roughly three times too large to be attributable to shifts of subtropical features, and the subtropical R minima deepen in most models. R trends are correlated with horizontal model resolution, especially outside the tropics, where they show signs of convergence and latitudinal gradients become close to available observations for GCM resolutions near T85 and higher. We argue that much of the systematic change in R can be explained by the local specific humidity having been set (by condensation) in remote regions with different temperature changes, hence the gradients and trends each depend on a model’s ability to resolve moisture transport. Finally, subtropical drying trends predicted from the warming alone fall well short of those observed in recent decades. While this discrepancy supports previous reports of GCMs underestimating Hadley Cell expansion, our results imply that shifts alone are not a sufficient interpretation of changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seeds of 39 seed lots of a total of twelve different crops were stored hermetically in a wide range of air-dry environments (2-25% moisture content at 0-50 degrees C), viability assessed periodically, and the seed viability equation constants estimated. Within a species, estimates of the constants which quantify absolute longevity (K-E) and the relative effects on longevity of moisture content (C-W) and temperature (C-H and C-Q) did not differ (P >0.05 to P >0.25) among lots. Comparison among the 12 crops provided variant estimates of K-E and C-W (P< 0.01), but common values of C-H and C-Q (0.0322 and 0.000454, respectively, P >0.25). Maize (Zea mays) provided the greatest estimate of K-E (9.993, s.e.= 0.456), followed by sorghum (Sorghum bicolor) (9.381, s.e. 0.428), pearl millet (Pennisetum typhoides) (9.336, s.e.= 0.408), sugar beet (Beta vulgaris) (8.988, s.e.= 0.387), African rice (Oryza glaberrima) (8.786, s.e.= 0.484), wheat (Triticum aestivum) (8.498, s.e.= 0.431), foxtail millet (Setaria italica) (8.478, s.e.= 0.396), sugarcane (Saccharum sp.) (8.454, s.e.= 0.545), finger millet (Eleusine coracana) (8.288, s.e.= 0.392), kodo millet (Paspalum scrobiculatum) (8.138, s.e.= 0.418), rice (Oryza sativa) (8.096, s.e.= 0.416) and potato (Solanum tuberosum) (8.037, s.e.= 0.397). Similarly, estimates of C-W were ranked maize (5.993, s.e.= 0.392), pearl millet (5.540, s.e.= 0.348), sorghum (5.379, s.e.=0.365), potato (5.152, s.e.= 0.347), sugar beet (4.969, s.e.= 0.328), sugar cane (4.964, s.e.= 0.518), foxtail millet (4.829, s.e.= 0.339), wheat (4.836, s.e.= 0.366), African rice (4.727, s.e.= 0.416), kodo millet (4.435, s.e.= 0.360), finger millet (4.345, s.e.= 0.336) and rice (4.246, s.e.= 0.355). The application of these constants to long-term seed storage is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O-.)CH2CH3 CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O-.)CH2CH3 + O-2 -> CH3C(O)C2H5 + HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O. -> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O. + O-2 -> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k(7)/k(6) = 5.4 x 1026 exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k(9)/k(8) = 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.