85 resultados para activity of enzymes
em CentAUR: Central Archive University of Reading - UK
Resumo:
A study was conducted to assess the effect of condensed tannins on the activity of fibrolytic enzymes from the anaerobic rumen fungus, Neocallimastix hurleyensis and a recombinant ferulic acid esterase (FAE) from the aerobic fungus Aspergillus niger. Condensed tannins were extracted from the tropical legumes Desmodium ovalifolium, Flemingia macrophylla, Leucaena leticocephala, Leucaena pallida, Calliandra calothyrsus and Clitoria fairchildiana and incubated in fungal enzyme mixtures or with the recombinant FAE. In most cases, the greatest reductions in enzyme activities were observed with tannins purified from D. ovalifolium and F macrophylla and the least with tannins from L leucocephala. Thus, whereas 40 mu g ml(-1) of condensed tannins from C. calothyrsus and L. leucocephala were needed to halve the activity of N. hurleyensis carboxymethylcellulase (CMCase), just 5.5 mu g ml(-1) of the same tannins were required to inhibit 50% of xylanase activity. The beta-D-glucosidase and beta-D-Xylosidase enzymes were less sensitive to tannin inhibition and concentrations greater than 100 mu g ml(-1) were required to reduce their activity by 50%. In other assays, the inhibitory effect of condensed tannins when added to incubation mixtures containing particulate substrates (the primary cell walls of E arundinacea) or when bound to these substrate was compared. Substrate-associated tannins were more effective in preventing fibrolytic activities than tannins added directly to incubations solutions. It was concluded that condensed tannins from tropical legumes can inhibit fibrolytic enzyme activities, although the extent of the effect was dependent on the tannin, the nature of its association with the substrate and the enzyme involved. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Background: Galactooligosaccharides are selectively fermented by the beneficial member of the colonic microflora contributing to the health of the host. Objective: We assessed the prebiotic potential of a novel galactooligosaccharide produced through the action of beta-galactosidases, originating from a probiotic Bifidobacterium bifidum strain, against a galactooligosaccharide produced through the action of an industrial P-galactosidase and a placebo. Design: Fifty-nine healthy human volunteers participated in this study. Initially, the effect of the matrix on the prebiotic properties of a commercially available galactooligosaccharide (7 g/d) was assessed during 7-d treatment periods with a 7-d washout period in between. During the second phase, 30 volunteers were assigned to a sequence of treatments (7 d) differing in the amount of the novel galactooligosaccharide (0, 3.6, or 7 g/d). Stools were recovered before and after each intervention, and bacteria numbers were determined by fluorescent in situ hybridization. Results: Addition of the novel galactooligosaccharide mixture significantly increased the bifidobacterial population ratio compared with the placebo (P < 0.05), whereas 7 g/d of the novel galactooligosaccharide significantly increased the bifidobacterial ratio compared with the commercial galactooligosaccharide (P < 0.05). Moreover, a significant relation (P < 0.001) between the bifidobacteria proportion and the novel galactooligosaccharide dose (0, 3.6, and 7 g/d) was observed. This relation was similar to the effect of the novel galactooligosaccharide on the prebiotic index of each dose. Conclusions: This study showed that galactooligosaccharide mixtures produced with different beta-galactosidases show different prebiotic properties and that, by using enzymes originating from bifidobacterial species, an increase in the bifidogenic properties of the prebiotic product is achievable.
Resumo:
Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination.
Resumo:
Carbendazim is highly toxic to earthworms and is used as a standard control substance when running field-based trials of pesticides, but results using carbendazim are highly variable. In the present study, impacts of timing of rainfall events following carbendazim application on earthworms were investigated. Lumbricus terrestris were maintained in soil columns to which carbendazim and then deionized water (a rainfall substitute) were applied. Carbendazim was applied at 4 kg/ha, the rate recommended in pesticide field trials. Three rainfall regimes were investigated: initial and delayed heavy rainfall 24 h and 6 d after carbendazim application, and frequent rainfall every 48 h. Earthworm mortality and movement of carbendazim through the soil was assessed 14 d after carbendazim application. No detectable movement of carbendazim occurred through the soil in any of the treatments or controls. Mortality in the initial heavy and frequent rainfall was significantly higher (approximately 55%) than in the delayed rainfall treatment (approximately 25%). This was due to reduced bioavailability of carbendazim in the latter treatment due to a prolonged period of sorption of carbendazim to soil particles before rainfall events. The impact of carbendazim application on earthworm surface activity was assessed using video cameras. Carbendazim applications significantly reduced surface activity due to avoidance behavior of the earthworms. Surface activity reductions were least in the delayed rainfall treatment due to the reduced bioavailability of the carbendazim. The nature of rainfall events' impacts on the response of earthworms to carbendazim applications, and details of rainfall events preceding and following applications during field trials should be made at a higher level of resolution than is currently practiced according to standard International Organization for Standardization protocols.
Resumo:
A completely randomised study was completed to examine the influence of fibrolytic enzymes derived from psychrophilic, (F), mesophilic, (L) or thermophilic (Ta) sources, applied at ensiling, on the chemical characteristics and in vitro rumen fermentation of maize silage, assessed using the Reading Pressure Technique (RPT). Treatments, all in triplicate, consisted of untreated maize forage or treated with preparations F, L, Ta or a mixture (1: 1, v/v) of F and L (FL), at two levels each, and ensiled for 210 days in plastic mini-silos. Addition of enzymes L decreased (P < 0.05) silage pH relative to the control, whereas enzyme Ta tended (P < 0.10) to reduce it. Preparations F, L and Ta tended to reduce (P < 0.10) the fibre contents of the silages, with effects being attributable to a decrease in the cellulose fraction. Starch contents were reduced (P < 0.05) in the treatments including enzyme F. End-point (96 h) gas production (GP) values did not differ among treatments, suggesting that enzymes did not change the total amount of fermentable substrate. However, consistent with the decrease in starch contents, adding enzyme F reduced (P < 0.05) GP at most incubation times. Addition of enzymes increased (P < 0.05) the initial (6 h) organic matter degradation (OMD) levels in all but one treatment (F), with increases of 14, 19, and 26% for preparations L, Ta, and FL, respectively, averaged across levels. Furthermore, the addition of enzymes increased (P < 0.05) the soluble OM losses, however, these increases did not fully account for the initial increase in OMD. The latter suggests that enzymes increased solubility and also altered silage structure, making it more amenable to degradation by ruminal microorganisms. As a result of the increase in OMD, without a concomitant increase in GP, the fermentation efficiency was greatly increased (P < 0.05) in enzyme treatments. Addition of enzymes to maize at ensiling, particularly those from the mesophilic and thermophilic sources used here, have the potential to increase the initial rate of silage OMD. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In dual cultures, the supernatant filtrate of the biological control agent Bacillus subtilis was evaluated against (Fusarium oxysporum f.sp. lentis) the causal organism of lentil vascular wilt. The antagonistic activity was evaluated as percent reduction of fungal growth (certainly due, in part, to the antifungal metabolites produced by the antagonistic bacterium). The in-vitro experiments showed that B. subtilis filtrate, whether solid or liquid media, had a strong inhibiting activity on the spore germination and mycelial growth of F. oxysporum f. sp. lentis. In a glasshouse experiment, soil was drenched with B. subtilis filtrate at 30 ml/kg (vol/wt) around seedlings of a susceptible lentil line (ILL 4605). In this treatment there was only 31% mortality compared with 100% kill of plants in the control treatment (P≤0.05).
Resumo:
1. We tested three pesticides used for field manipulations of herbivory for direct phytoactive effects on the germination and growth of 14 herbaceous plant species selected to provide a range of life-history strategies and functional groups. 2. We report three companion experiments: (A) Two insecticides, chlorpyrifos (granular soil insecticide) and dimethoate (foliar spray), were applied in fully-factorial combination to pot-germinated individuals of 12 species. (B) The same fully-factorial design was used to test for direct effects on the germination of four herbaceous legumes. (C) The molluscicide, metaldehyde, was tested for direct effects on the germination and growth of six plant species. 3. The insecticides had few significant effects on growth and germination. Dimethoate acted only on growth stimulating Anisantha sterilis, Sonchus asper and Stellaria graminea. In contrast, chlorpyrifos acted on germination increasing the germination of Trifolium dubium and Trifolium pratense. There was also a significant interactive effect of chlorpyrifos and dimethoate on the germination of T pratense. However, all. effects were relatively small in magnitude and explanatory power. The molluscicide had no significant effect on plant germination or growth. 4. The small number and size of direct effects of the pesticides on plant performance is encouraging for the use of these pesticides in manipulative experiments on herbivory, especially for the molluscicide. However, a smatt number of direct (positive) effects of the insecticides on some plant species need to be taken into account when interpreting field manipulations of herbivory with these compounds, and emphasises the importance of conducting tests for direct phyto-active effects. (C) 2004 Elsevier GmbH. All rights reserved.
Resumo:
This Study was designed to investigate impact of tannins on in vitro ruminal fermentation parameters as well as relationships between concentration and in vitro biological activity of tannins present in tree fruits. Dry and mature fruits of known phenolic content harvested from Acacia nilotica, A. erubescens, A. erioloba, A. sieberiana, Piliostigima thonningii and Dichrostachys cinerea tree species were fermented with rumen fluid in vitro with or without polyethylene glycol (PEG). Correlation between in vitro biological activity and phenolic concentration was determined. Polyethylene glycol inclusion increased Cumulative gas production from all fruit substrates. The largest Increase (225%) after 48 h incubation was observed in D. cinerea fruits while the least (12.7%) increase was observed in A. erubescens fruits. Organic matter degradability (48 h) was increased by PEG inclusion for all tree species except A. erubescens and P. thonningii. For D. cinerea fruits, colorimetric assays were poorly correlated to Increases In gas production due to PEG treatment. Ytterbium precipitable phenolics (YbPh) were also poorly correlated with response to PEG for A. erioloba and P. thonningii fruits. However, YbPh were strongly and positively correlated to the increase In Cumulative gas production due to PEG for A. erubescens and A. nilotica. Folin-Ciocalteau assayed phenolics (SPh) were not correlated to response to PEG in P. thonningii and A. sieberiana. It was Concluded that the PEG effect oil in vitro fermentation was closely related to some measures of phenolic concentration but the relationships varied with tree species.
Resumo:
Fusarium oxysporum f.sp. lycopersici (Fol) is the causal agent of the Fusarium wilt disease of tomato. Soil fumigant (mainly methyl bromide) applications are in use for its control. With the increasing environmental awareness, biological control methods are under investigation for their effectiveness, including the use of antagonists. Pseudomonas oryzihabitans (=Flavimonas oryzihabitans), a symbiont of the entomopathogenic nematode Steinernema abbasi was investigated as an antagonism of a Fol isolate in two laboratory and two glasshouse experiments. Bacteria and cell-free filtrate antifungal activity were tested both in dual cultures and in broth culture. In pot experiments, suspensions of bacteria in five concentrations (106, 105, 104, 103 and 102 cells/ml) were tested for their ability to control the pathogen at 25±3°C. In all tests the bacterium significantly inhibited the growth of Fol mycelium in vitro. Similar results were obtained when the bacterium was also tested against Fusarium oxysporum f.sp. radicis lycopersici and against Rhizoctonia solani. Moreover, when it was introduced into the soil, it was able to suppress the Fusarium wilt of tomato.
Resumo:
Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [H-3]oestradiol from recombinant human oestrogen receptors ER alpha and ER beta, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 x 10(-5) to 5 x 10(-4) M, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10(-8) M 17 beta-oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10(-8) M 17 beta-oestradiol, given a longer time period of 35 days the extent of proliferation with 10(-4) M benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10(-8) M 17 beta-oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.