87 resultados para ab initio electron theory

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew–Burke–Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combining ab initio and tight-binding calculations, we have studied the noncollinear magnetism in manganese clusters. The oscillations in the per-atom moments observed experimentally are reproduced theoretically. The tendency of antiferromagnetic coupling between near neighbors leads to noncollinear coupling between atoms within the clusters. For clusters containing 12, 13, 15, 19, and 23 atoms, the geometrical structures were optimized from ab initio calculations with collinear coupled spin moments among different atomic sites. For larger clusters such as Mn-36 and Mn-55, the geometries are taken as portions of an fcc structure. Although the local atomic moments have high values close to 4 mu(B), the net moments lie in the range of 0.4-1.2 mu(B)/atom. Taking the noncollinear coupling into account brings the calculated magnetic moments much closer to the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report quantum diffusion Monte Carlo (DMC) and variational calculations in full dimensionality for selected vibrational states of H5O2+ using a new ab initio potential energy surface [X. Huang, B. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005)]. The energy and properties of the zero-point state are focused on in the rigorous DMC calculations. OH-stretch fundamentals are also calculated using "fixed-node" DMC calculations and variationally using two versions of the code MULTIMODE. These results are compared with infrared multiphoton dissociation measurements of Yeh [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)]. Some preliminary results for the energies of several modes of the shared hydrogen are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three lowest (1(2)A('), 2(2)A('), and 1(2)A(')) potential-energy surfaces of the C2Cl radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the (CCCl)-C-12-C-12-Cl-35 isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)(2), (D2O)(2), (H2O)(3), and (D2O)(3) using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang , J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zn(CN)2 and Ni(CN)2 are known for exhibiting anomalous thermal expansion over a wide temperature range. The volume thermal expansion coefficient for the cubic, three dimensionally connected material, Zn(CN)2, is negative (alpha(V) = −51  10(-6) K-1) while for Ni(CN)2, a tetragonal material, the thermal expansion coefficient is negative in the two dimensionally connected sheets (alpha(a) = −7  10(-6) K-1), but the overall thermal expansion coefficient is positive (alpha(V) = 48  10(-6) K-1). We have measured the temperature dependence of phonon spectra in these compounds and analyzed them using ab initio calculations. The spectra of the two compounds show large differences that cannot be explained by simple mass renormalization of the modes involving Zn (65.38 amu) and Ni (58.69 amu) atoms. This reflects the fact that the structure and bonding are quite different in the two compounds. The calculated pressure dependence of the phonon modes and of the thermal expansion coefficient, alpha(V), are used to understand the anomalous behavior in these compounds. Our ab initio calculations indicate that phonon modes of energy approx. 2 meV are major contributors to negative thermal expansion (NTE) in both the compounds. The low-energy modes of approx.8 and 13 meV in Zn(CN)2 also contribute significantly to the NTE in Zn(CN)2 and Ni(CN)2, respectively. The measured temperature dependence of the phonon spectra has been used to estimate the total anharmonicity of both compounds. For Zn(CN)2, the temperature-dependent measurements (total anharmonicity), along with our previously reported pressure dependence of the phonon spectra (quasiharmonic), is used to separate the explicit temperature effect at constant volume (intrinsic anharmonicity).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of 2,5-dihydropyrrole (C4NH7) has been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing third-order Moller-Plesset (MP3) level of theory and the 6-311+G(d,p) basis set. Several theoretical calculations were performed. From theoretical calculations using MP3/6-311+G(d,p) evidence was obtained for the presence of an axial (63%) (N-H bond axial to the CNC plane) and an equatorial conformer (37%) (N-H bond equatorial to the CNC plane). The five-membered ring was found to be puckered with the CNC plane inclined at 21.8 (38)&DEG; to the plane of the four carbon atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of trimethylchlorogermane ((CH3)(3)GeCl) and trimethylbromogermane ((CH3)(3)GeBr) have been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing second-order Moller-Plesset (MP2) level of theory and the 6-311+G(d) basis set. All the electrons were included in the correlation calculation. The results from the ab initio calculations indicated that these molecules have C-3v symmetry, and models with this symmetry were used in the electron diffraction analysis. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylchlorogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.950(4) Angstrom, r(Ge-Cl) = 2.173(4) Angstrom, r(C-H) = 1.090(9) Angstrom, angleCGeC = 112.7(7)degrees, angleCGeCl = 106.0(8)degrees, angleGeCH = 107.8(12)degrees. The results for the principal distances (r(g)) and angles (angle(alpha)) from the combined GED/ab initio study of trimethylbromogermane (with estimated 2sigma uncertainties) are: r(Ge-C) = 1.952(7) Angstrom, r(Ge-Br) = 2.325(4) Angstrom, r(C-H) = 1. 140(28) Angstrom, angleCGeC = 114.2(11)degrees, angleCGeBr = 104.2(13)degrees, angleGeCH 106.9(43)degrees. Local C-3v symmetry and staggered conformation were assumed for the methyl groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[ c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293–263 K only on the subsecond time scale of cyclic voltammetry. Although the EPR-active red-coloured pleiadiene radical cation is stable according to the literature in concentrated sulfuric acid, spectroelectrochemical measurements reported in this study provide convincing evidence for its facile conversion into the green-coloured, formally closed shell and, hence, EPRsilent π-bound dimer dication stable in THF at 253 K. The unexpected formation of the thermally unstable dimeric product featuring a characteristic intense low-energy absorption band at 673 nm (1.84 eV; logεmax=4.0) is substantiated by ab initio calculations on the parent pleiadiene molecule and the PF6 − salts of the corresponding radical cation and dimer dication. The latter is stabilized with respect to the radical cation by 14.40 kcal mol−1 (DFT B3LYP) [37.64 kcal mol−1 (CASPT2/DFT B3LYP)]. An excellent match has been obtained between the experimental and TDDFT- calculated UV–vis spectra of the PF6 − salt of the pleiadiene dimer dication, considering solvent (THF) effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase electron diffraction (GED) data together with results from ab initio molecular orbital calculations (HF and MP2/6-311+G(d,p)) have been used to determine the structure of hexamethyldigermane ((CH3)3Ge-Ge(CH3)3). The equilibrium symmetry is D3d, but the molecule has a very low-frequency, largeamplitude, torsional mode (φCGeGeC) that lowers the thermal average symmetry. The effect of this largeamplitude mode on the interatomic distances was described by a dynamic model which consisted of a set of pseudoconformers spaced at even intervals. The amount of each pseudoconformer was obtained from the ab initio calculations (HF/6-311+G(d,p)). The results for the principal distances (ra) and angles (∠h1) obtained from the combined GED/ab initio (with estimated 1σ uncertainties) are r(Ge-Ge) ) 2.417(2) Å, r(Ge-C) ) 1.956(1) Å, r(C-H) ) 1.097(5) Å, ∠GeGeC ) 110.5(2)°, and ∠GeCH ) 108.8(6)°. Theoretical calculations were performed for the related molecules ((CH3)3Si-Si(CH3)3 and (CH3)3C-C(CH3)3).