2 resultados para Zaleski Bohdan
em CentAUR: Central Archive University of Reading - UK
Resumo:
Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.