8 resultados para ZSM-5 catalyst

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al-Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si94Al2O192 cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g. the T14 site), and the Al-Al interaction, which at this Si/Al maximises Al-Al distances in agreement with Dempsey’s rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al-Al distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AB, monomer, 3,5-bis(3-hydroxylprop-1-ynyl)benzoic acid 1, has been synthesized using a Sonogashira cross-coupling with a palladium catalyst system developed for use with deactivated aryl halides. Numerous condensation methods have then been assessed in the homopolymerization of the acid-diol monomer 1 to afford hyperbranched polyesters. However, as a result of the thermal instability of the monomer, direct thermal polymerizations could not be employed. Alternative approaches using carbodiimide-coupling reagents enabled the production of soluble polyesters possessing molecular weights and degrees of branching ranging from 2500 to 11,000 and 0.22 to 0.33, respectively. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH4 are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)(3)H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH4 evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH4, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH4 are therefore made. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated similar to 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A water gas shift catalyst comprising metal particles and a metal oxide material is disclosed. The metal particles comprise at least one precious metal and the metal oxide material comprises at least one reducible metal oxide. Substantially all of the metal particles are encapsulated by the metal oxide material such that the catalyst has substantially no activity for methanation. The loading of the metal particles is between 0.5-25wt% based on the weight of the metal oxide material. A process for preparing the catalyst is also disclosed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of NO on Ir{100} has been studied as a function of NO coverage and temperature using temperature programmed reflection absorption infrared spectroscopy (TP-RAIRS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). After saturating the clean (1 x 5)-reconstructed surface with NO at 95 K. two N-2, desorption peaks are observed upon heating. The first N-2 peak at 346 K results from the decomposition of bridge-bonded NO, and the second at 475 K from the decomposition of atop-bonded NO molecules. NO decomposition is proposed to be the rate limiting step for both N-2 desorption states. For high NO coverages on the (1 x 5) surface, the narrow width of the first N-2 desorption peak is indicative of an autocatalytic process for which the parallel formation of N2O appears to be the crucial step. When NO is adsorbed on the metastable unreconstructed (1 x 1) phase of clean Ir{100} N-2 desorption starts at lower temperatures, indicating that this surface modification is more reactive. When a high coverage of oxygen, near 0.5 ML, is pre-adsorbed on the surface, the decomposition of NO is inhibited and mainly desorption of intact NO is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is used to study the chemical state of methane oxidation catalysts in-situ. Al2O3{supported Pd catalysts are prepared with different particle sizes ranging from 4 nm to 10 nm. These catalysts were exposed to conditions similar to those used in the partial oxidation of methane (POM) to syn-gas and simultaneously monitored by NAP-XPS and mass spectrometry. NAP-XPS data show changes in the oxidation state of the palladium as the temperature in- creases, from metallic Pd0 to PdO, and back to Pd0. Mass spectrometry shows an increase in CO production whilst the Pd is in the oxide phase, and the metal is reduced back under presence of newly formed H2. A particle size effect is observed, such that CH4 conversion starts at lower temperatures with larger sized particles from 6 nm to 10 nm. We find that all nanoparticles begin CH4 conversion at lower temperatures than polycrystalline Pd foil.