8 resultados para Young men.
em CentAUR: Central Archive University of Reading - UK
Resumo:
An exaggerated postprandial lipaemic response is thought to play a central role in the development of an atherogenic lipoprotein phenotype, a recognized lipid risk factor for coronary heart disease. A small number of limited studies have compared postprandial lipaemia in subjects of varying age, but have not investigated mechanisms underlying age-associated changes in postprandial lipaemia. In order to test the hypothesis that impaired lipaemia in older subjects is associated with loss of insulin sensitivity, the present study compared the postprandial lipaemic and hormone responses for 9 h following a standard mixed meal in normolipidaemic healthy young and middle-aged men. Lipoprotein lipase (LPL) and hepatic lipase (HL) activities were determined in post-heparin plasma 9 h postprandially and on another occasion under fasting conditions. Postprandial plasma glucose (P < 0.02), retinyl ester (indirect marker for chylomicron particles; P < 0.005) and triacylglycerol (TAG)-rich lipoprotein (density < 1.006 g/ml fraction of plasma) TAG (P < 0.05) and retinyl ester (P < 0.005) responses were higher in middle-aged men, whereas plasma insulin responses were lower in this group (P < 0.001). Fasting and 9 h postprandial LPL and HL activities were also significantly lower in the middle-aged men compared with the young men (P < 0.006). In conclusion, the higher incremental postprandial TAG response in middle-aged men than young men was attributed to the accumulation of dietary-derived TAG-rich lipoproteins (density < 1.006 g/ml fraction of plasma) and occurred in the absence of marked differences in fasting TAG levels between the two groups. Fasting and postprandial LPL and HL activities were markedly lower in middle-aged men, but lack of statistical associations between measures of insulin response and post-heparin lipase activities, as well as between insulin and measures of postprandial lipaemia, suggest that this lower activity cannot be attributed to lack of sensitivity of lipases to activation by insulin. Alternatively, post-heparin lipase activities may not be good markers for the insulin-sensitive component of lipase that is activated postprandially.
Resumo:
The aim was to determine in 32 healthy young men from northern and southern Europe whether differences in the secretion of insulin and glucose-dependent insulinotropic polypeptide (GIP) might explain these findings through the actions of these hormones on lipoprotein lipase. In a randomized, single-blind, crossover study the effects of 2 test meals of identical macronutrient composition but different saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) contents were investigated on postprandial GIP, insulin, the ratio of incremental triacylglycerol to apolipoprotein B-48 (a marker of chylomicron size), and the activity of postheparin lipases. Fasting and postprandial GIP concentrations and postheparin hepatic lipase (HL) activities were higher in the southern Europeans (P<0.001 and P<0.02, respectively). Lipoprotein lipase activity after the SFA-rich meal was higher in the northern Europeans (P<0.01). HL activity 9 h after the SFA-rich meal and the area under the curve (AUC) for the postprandial insulin response correlated with the AUC for the postprandial GIP response (r=0.44 (P<0.04) and r=0.46 (P<0.05), respectively). There were no significant differences in chylomicron size between the 2 groups for either meal, but when the groups were combined there was a difference in chylomicron size between the SFA- and MUFA-rich meals (P<0.05), which could be due to the formation of larger chylomicrons after the MUFA-rich meal. The significantly higher GIP and insulin responses and HL activities in southern Europeans may provide an explanation for a previous report of attenuated postprandial triacylglycerol and apolipoprotein B-48 responses in them.
Resumo:
In two separate studies, the cholesterol-lowering efficacy of a diet high in monounsaturated fatty acids (MUFA) was evaluated by means of a randomized crossover trial. In both studies subjects were randomized to receive either a high-MUFA diet or the control diet first, which they followed for a period of 8 weeks; following a washout period of 4–6 weeks they were transferred onto the opposing diet for a further period of 8 weeks. In one study subjects were healthy middle-aged men (n 30), and in the other they were young men (n 23) with a family history of CHD recruited from two centres (Guildford and Dublin). The two studies were conducted over the same time period using identical foods and study designs. Subjects consumed 38% energy as fat, with 18% energy as MUFA and 10% as saturated fatty acids (MUFA diet), or 13% energy as MUFA and 16% as saturated fatty acids (control diet). The polyunsaturated fatty acid content of each diet was 7%. The diets were achieved by providing subjects with manufactured foods such as spreads, ‘ready meals’, biscuits, puddings and breads, which, apart from their fatty acid compositions, were identical for both diets. Subjects were blind to which of the diets they were following on both arms of the study. Weight changes on the diets were less than 1 kg. In the groups combined (n 53) mean total and LDL-cholesterol levels were significantly lower at the end of the MUFA diet than the control diet by 0×29 (SD 0×61) mmol/l (P,0×001) and 0×38 (SD 0×64) mmol/l (P, 0×0001) respectively. In middle-aged men these differences were due to a mean reduction in LDL-cholesterol of ¹11 (SD 12) % on the MUFA diet with no change on the control diet (¹1×1 (SD 10) %). In young men the differences were due to an increase in LDL-cholesterol concentration on the control diet of þ6×2 (SD 13) % and a decrease on the MUFA diet of ¹7×8 (SD 20) %. Differences in the responses of middle-aged and young men to the two diets did not appear to be due to differences in their habitual baseline diets which were generally similar, but appeared to reflect the lower baseline cholesterol concentrations in the younger men. There was a moderately strong and statistically significant inverse correlation between the change in LDLcholesterol concentration on each diet and the baseline fasting LDL-cholesterol concentration (r¹0×49; P,0×0005). In conclusion, diets in which saturated fat is partially replaced by MUFA can achieve significant reductions in total and LDL-cholesterol concentrations, even when total fat and energy intakes are maintained. The dietary approach used to alter fatty acid intakes would be appropriate for achieving reductions in saturated fat intakes in whole populations.
Resumo:
The extent and duration of postprandial lipaemia have been linked to risk of CHD but the influence of dietary variables on, and the relative contributions of, exogenous (chylomicron) and endogenous (VLDL) triacylglycerols to the total lipaemic response have not been comprehensively evaluated. In the present study the triacylglycerol, apolipoprotein (apo) B-48 and retinyl ester (RE) responses to three test meals of varying monounsaturated (MUFA) and saturated fatty acid (SFA) content were measured in the triacylglycerol-rich lipoprotein (TRL) fraction of plasma (r ¼ 1·006 g/ml) for 9 h after meal consumption. Fifteen healthy normolipidaemic young men consumed, on separate occasions, three test meals which were identical apart from their MUFA and SFA contents. Expressed as a percentage of total energy the MUFA/SFA contents of the meals were: (1) 12 %/17 %; (2) 17 %/12% and (3) 24 %/5 %. The contribution of the intestinally-derived lipoproteins (chylomicrons) to the lipaemic response was investigated by determining the time to reach peak concentration and the total and incremental areas under the time response curves (AUC and incremental AUC) for RE, apoB-48 and triacylglycerol in the TRL fraction. No significant differences in these measurements were observed for the three meals. However, visual comparison of the postprandial responses to the three meals suggested that as meal MUFA content increased there was a tendency for the triacylglycerol, apoB-48 and RE responses to become biphasic as opposed to the typical monophasic response seen with the 12% MUFA/17% SFA meal. Comparison of the apoB-48 and RE responses for the three test meals confirmed other workers’ findings of delayed entry of RE relative to apoB-48 in TRL. The value of the two markers in investigating dietary fat absorption and metabolism is discussed.
Resumo:
Although consuming adequate amounts of fruits and vegetables reduces the risk of developing chronic diseases, it is widely recognized that young adults’ intakes are currently well below the Department of Health’s recommended five portions a day, with men consuming even less than women. One approach in the UK has been to introduce health campaigns such as the 5 A DAY programme; however, little is currently known about how well their messages are understood amongst young adults. This study examined current knowledge of the 5 A DAY message in young adults, as well as the perceived benefits and remaining barriers towards consuming more fruits and vegetables. In total, four focus groups were conducted using male (n = 22) and female (n = 18) students at the University of Reading. Content analysis revealed that while participants were aware of the 5 A DAY recommendation, there was widespread confusion regarding the detail. In addition, men were less accepting of the message than women, reporting greater disbelief and a lack of motivation to increase intake. Finally, a range of barriers was reported by participants of both genders, despite the perceived beneficial effects for health and appearance. The results illustrate a considerable gap between awareness and knowledge of the 5 A DAY message, and underscore the challenge that changing behaviour in young adults represents. As well as stepping up education- and skill-based health campaigns, more targeted gender specific interventions will be needed to achieve sustained increases in fruit and vegetable intake.
Resumo:
Increased vascular stiffness, endothelial dysfunction, and isolated systolic hypertension are hallmarks of vascular aging. Regular cocoa flavanol (CF) intake can improve vascular function in healthy young and elderly at-risk individuals. However, the mechanisms underlying CF bioactivity remain largely unknown. We investigated the effects of CF intake on cardiovascular function in healthy young and elderly individuals without history, signs, or symptoms of cardiovascular disease by applying particular focus on functional endpoints relevant to cardiovascular aging. In a randomized, controlled, double-masked, parallel-group dietary intervention trial, 22 young (<35yrs) and 20 elderly (50-80yrs) healthy, male non- smokers consumed either a CF-containing drink (450mg CF) or nutrient-matched, CF-free control drink bi-daily for 14 days. The primary endpoint was endothelial function as measured by flow-mediated vasodilation (FMD). Secondary endpoints included cardiac output, vascular stiffness, conductance of conduit and resistance arteries, and perfusion in the microcirculation. Following 2 weeks of CF intake, FMD improved in young (6.1±0.7% vs. 7.6±0.7%, p<0.001) and elderly (4.9±0.6% vs. 6.3±0.9%, p<0.001). Secondary outcomes demonstrated in both groups that CF intake decreased pulse wave velocity and lowered total peripheral resistance, increased arteriolar- and microvascular vasodilator capacity, red cell deformability, and diastolic blood pressure, while cardiac output remained affected. In the elderly, baseline systolic blood pressure was elevated, driven by an arterial stiffness-related augmentation. CF intake decreased aortic augmentation index (-9%), and thus systolic blood pressure (-7mmHg). (Clinicaltrials.gov:NCT01639781) CF intake reverses age-related burden of cardiovascular risk in healthy elderly, highlighting the potential of dietary flavanols to maintain cardiovascular health.