8 resultados para Yeast industry -- Queensland -- Toowoomba -- Waste disposal
em CentAUR: Central Archive University of Reading - UK
Resumo:
Of the many sources of urban greenhouse gas (GHG) emissions, solid waste is the only one for which management decisions are undertaken primarily by municipal governments themselves and is hence often the largest component of cities’ corporate inventories. It is essential that decision-makers select an appropriate quantification methodology and have an appreciation of methodological strengths and shortcomings. This work compares four different waste emissions quantification methods, including Intergovernmental Panel on Climate Change (IPCC) 1996 guidelines, IPCC 2006 guidelines, U.S. Environmental Protection Agency (EPA) Waste Reduction Model (WARM), and the Federation of Canadian Municipalities- Partners for Climate Protection (FCM-PCP) quantification tool. Waste disposal data for the greater Toronto area (GTA) in 2005 are used for all methodologies; treatment options (including landfill, incineration, compost, and anaerobic digestion) are examined where available in methodologies. Landfill was shown to be the greatest source of GHG emissions, contributing more than three-quarters of total emissions associated with waste management. Results from the different landfill gas (LFG) quantification approaches ranged from an emissions source of 557 kt carbon dioxide equivalents (CO2e) (FCM-PCP) to a carbon sink of −53 kt CO2e (EPA WARM). Similar values were obtained between IPCC approaches. The IPCC 2006 method was found to be more appropriate for inventorying applications because it uses a waste-in-place (WIP) approach, rather than a methane commitment (MC) approach, despite perceived onerous data requirements for WIP. MC approaches were found to be useful from a planning standpoint; however, uncertainty associated with their projections of future parameter values limits their applicability for GHG inventorying. MC and WIP methods provided similar results in this case study; however, this is case specific because of similarity in assumptions of present and future landfill parameters and quantities of annual waste deposited in recent years being relatively consistent.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
Concern for the environmental impact of organizations’ activities has led to the recognition and demand for organizations to manage and report on their carbon footprint. However, there is no limit as to the areas of carbon footprints required in such annual environmental reports. To deliver improvements in the quality of carbon footprint management and reporting, there is a need to identify the main elements of carbon footprint strategy that can be endorsed, supported and encouraged by facility managers. The study investigates carbon footprint elements managed and reported upon by facility manager in the UK. Drawing on a questionnaire survey of 256 facility managers in the UK, the key elements of carbon footprints identified in carbon footprint reports are examined. The findings indicate that the main elements are building energy consumption, waste disposal and water consumption. Business travel in terms of using public transport, air travel and company cars are also recognized as important targets and objectives for the carbon footprint strategy of several FM (facilities management) organizations.
Resumo:
As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.
Resumo:
Organizations introduce acceptable use policies to deter employee computer misuse. Despite the controlling, monitoring and other forms of interventions employed, some employees misuse the organizational computers to carry out their personal work such as sending emails, surfing internet, chatting, playing games etc. These activities not only waste productive time of employees but also bring a risk to the organization. A questionnaire was administrated to a random sample of employees selected from large and medium scale software development organizations, which measured the work computer misuse levels and the factors that influence such behavior. The presence of guidelines provided no evidence of significant effect on the level of employee computer misuse. Not having access to Internet /email away from work and organizational settings were identified to be the most significant influences of work computer misuse.
Resumo:
Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.
Resumo:
Rapeseed meal (RSM) hydrolysate was evaluated as substitute for commercial nutrient supplements in 1,3-propanediol (PDO) fermentation using the strain Clostridium butyricum VPI 1718. RSM was enzymatically converted into a generic fermentation feedstock, enriched in amino acids, peptides and various micro-nutrients, using crude enzyme consortia produced via solid state fermentation by a fungal strain of Aspergillus oryzae. Initial free amino nitrogen concentration influenced PDO production in batch cultures. RSM hydrolysates were compared with commercial nutrient supplements regarding PDO production in fed-batch cultures carried out in a bench-scale bioreactor. The utilization of RSM hydrolysates in repeated batch cultivation resulted in a PDO concentration of 65.5 g/L with an overall productivity of 1.15 g/L/h that was almost 2 times higher than the productivity achieved when yeast extract was used as nutrient supplement.