4 resultados para Yams
em CentAUR: Central Archive University of Reading - UK
Resumo:
The objective of this study was to quantify the effect of photoperiod on the duration from vine (shoot) emergence to flowering in white or Guinea yam (Dioscorea rotundata). The duration from vine emergence to flowering in two clonal varieties of yam (TDr 131 and TDr 99-9) was recorded at 10 different sowing dates/locations in Nigeria. Durations to flowering varied from 40 to > 88 days. Mean daily temperature and photoperiod between vine emergence and flowering varied from 25 to 27 degrees C and 13.1 to 13.4 h day(-1), respectively. Both clones had similar responses to temperature, with base and optimum temperatures of 12 and 25-27 degrees C, respectively. Thermal durations to flowering were strongly related (r(2) > 0.75-0.83) to absolute photoperiod (h) at vine emergence as well as to rate of change of photoperiod (s day(-1)) at vine emergence. The response to absolute photoperiod suggests that white yams are quantitative LDPs, flowering sooner in long than short days. Yams also flowered earlier when the rate of change of photoperiod was positive but small, or was negative. It is suggested that yams may use a combination of photoperiod and rate of change in order to fine tune flowering time. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Tuber dormancy enables yams to survive in the ground during the dry season and post-harvest storage. Three clones of Dioscorea rotundata were harvested after five intervals and then stored in a cooler (20.6°C) or at ambient temperature (27.8°C). The time from harvest to sprouting was shorter as harvest was delayed. The period from sowing to sprouting for each clone was similar for tubers harvested from 140 days after planting, but tubers harvested earlier took longer to sprout. The cooler temperature delayed sprouting. Tubers of two clones sprouted after only 70 days of crop growth. If the dormancy period of these young tubers can be broken, the generation time of yam crop improvement programmes could be considerably reduced.
Resumo:
The objective of this study was to quantify the effect of photoperiod on the duration from vine (shoot) emergence to flowering in white or Guinea yam (Dioscorea rotundata). The duration from vine emergence to flowering in two clonal varieties of yam (TDr 131 and TDr 99-9) was recorded at 10 different sowing dates/locations in Nigeria. Durations to flowering varied from 40 to > 88 days. Mean daily temperature and photoperiod between vine emergence and flowering varied from 25 to 27 degrees C and 13.1 to 13.4 h day(-1), respectively. Both clones had similar responses to temperature, with base and optimum temperatures of 12 and 25-27 degrees C, respectively. Thermal durations to flowering were strongly related (r(2) > 0.75-0.83) to absolute photoperiod (h) at vine emergence as well as to rate of change of photoperiod (s day(-1)) at vine emergence. The response to absolute photoperiod suggests that white yams are quantitative LDPs, flowering sooner in long than short days. Yams also flowered earlier when the rate of change of photoperiod was positive but small, or was negative. It is suggested that yams may use a combination of photoperiod and rate of change in order to fine tune flowering time. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Climate change is a serious threat to crop productivity in regions that are already food insecure. We assessed the projected impacts of climate change on the yield of eight major crops in Africa and South Asia using a systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies. Here we show that the projected mean change in yield of all crops is − 8% by the 2050s in both regions. Across Africa, mean yield changes of − 17% (wheat), − 5% (maize), − 15% (sorghum) and − 10% (millet) and across South Asia of − 16% (maize) and − 11% (sorghum) were estimated. No mean change in yield was detected for rice. The limited number of studies identified for cassava, sugarcane and yams precluded any opportunity to conduct a meta-analysis for these crops. Variation about the projected mean yield change for all crops was smaller in studies that used an ensemble of > 3 climate (GCM) models. Conversely, complex simulation studies that used biophysical crop models showed the greatest variation in mean yield changes. Evidence of crop yield impact in Africa and South Asia is robust for wheat, maize, sorghum and millet, and either inconclusive, absent or contradictory for rice, cassava and sugarcane.