15 resultados para YIELD EFFICIENCY
em CentAUR: Central Archive University of Reading - UK
Resumo:
Biomass partitioning of cacao (Theobroma cacao L.) was studied in seven clones and five hybrids in a replicated experiment in Bahia, Brazil. Over an eighteen month period, a seven- fold difference in dry bean yield was demonstrated between genotypes, ranging from the equivalent of 200 to 1389 kg.ha-1. During the same interval, the increase in trunk cross-sectional area ranged from 11.1 cm2 for clone EEG-29 to 27.6 cm2 for hybrid PA-150 * MA-15. Yield efficiency increment (the ratio of cumulative yield to the increase in trunk circumference), which indicated partitioning between the vegetative and reproductive components, ranged from 0.008 kg.cm-2 for clone CP-82 to 0.08 kg.cm-2 for clone EEG-29. An examination of biomass partitioning within the pod of the seven clones revealed that the beans accounted for between 32.0% (CP-82) and 44.5% (ICS-9) of the pod biomass. The study demonstrated the potential for yield improvement in cacao by selectively breeding for more efficient partitioning to the yield component.
Resumo:
The bifidobacterial β-galactosidase (BbgIV) was produced in E. coli DH5α at 37 and 30 °C in a 5 L bioreactor under varied conditions of dissolved oxygen (dO2) and pH. The yield of soluble BbgIV was significantly (P < 0.05) increased once the dO2 dropped to 0–2% and remained at such low values during the exponential phase. Limited dO2 significantly (P < 0.05) increased the plasmid copy number and decreased the cells growth rate. Consequently, the BbgIV yield increased to its maximum (71–75 mg per g dry cell weight), which represented 20–25% of the total soluble proteins in the cells. In addition, the specific activity and catalytic efficiency of BbgIV were significantly (P < 0.05) enhanced under limited dO2 conditions. This was concomitant with a change in the enzyme secondary structure, suggesting a link between the enzyme structure and function. The knowledge generated from this work is very important for producing BbgIV as a biocatalyst for the development of a cost-effective process for the synthesis of prebiotic galactooligosaccharides from lactose.
Resumo:
The research outlined in this paper highlights the importance of the early nutrition of vegetable crops, and its long-term effects on their subsequent growth and development. Results are also presented to demonstrate how the nutrient supply during the establishment stages of young seedlings and transplants can be enhanced by targeting fertiliser to a zone close to their developing roots. Three different precision fertiliser placement techniques are compared for this purpose: starter, band or side-injected fertiliser. The use of each of these methods consistently produced the same (or greater) yields at lower application rates than those from conventional broadcast applications, increasing the apparent recovery of N, P and K, and the overall efficiency of nutrient use, while reducing the levels of residual nutrients in the soil. Starter fertilisers also advanced the maturity of some crops, and enhanced produce quality by increasing the proportions of the larger and/or more desirable marketable grades. The benefits of the different placement techniques are illustrated with selected examples from research at Warwick HRI using different vegetable crops, including lettuce, onion and carrot.
Resumo:
The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea.
Resumo:
In this article we examine sources of technical efficiency for rice farming in Bangladesh. The motivation for the analysis is the need to close the rice yield gap to enable food security. We employ the DEA double bootstrap of Simar and Wilson (2007) to estimate and explain technical efficiency. This technique overcomes severe limitations inherent in using the two-stage DEA approach commonly employed in the efficiency literature. From a policy perspective our results show that potential efficiency gains to reduce the yield gap are greater than previously found. Statistically positive influences on technical efficiency are education, extension and credit, with age being a negative influence.
Resumo:
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (lambda, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of lambda near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.
Resumo:
The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).
Resumo:
Heterosis in hybrid wheat varieties produced using a chemical hybridising agent was assessed in field experiments. Hyno Esta and its parents were compared in factorial combinations of four-seed rates (25-300 seeds m(-2)) and two nitrogen fertilizer rates (0 and 200 kg N ha(-1)) in 2001/02 and again in 2002/03. Hyno Rista and Hyno Renta and their parents were compared at two-seed rates in 2001/02. Hyno Rista and its parents were added factorially to the Hyno Esta experiment in 2002/03, while Hyno Renta and Hybred and their parents were compared at two seed rates in 2002/03. Mid parent heterosis for grain yield was found in three hybrids and two of these showed high parent heterosis. High parent heterosis in Hyno Esta over a range of sowing densities was mostly exhibited in total biomass but also, in one of two years, in harvest index. High parent heterosis in Hyno Renta was associated more with harvest index than with biomass. The heterosis for biomass in Hyno Esta resulted from greater interception of photosynthetically active radiation (PAR) than the male parent, with better radiation use efficiency than the female parent. In both seasons Hyno Esta achieved grain numbers per ear at least as high as the high parent for this trait (Audace), and combined this with mean grain weights at least as heavy as the high parent for mean grain weight (Estica). Much of the increased biomass and grain yield in the hybrid came late in the season as high parent heterosis was expressed for both maximum grain filling rate and grain filling duration. Heterosis was higher when nitrogen was applied than when withheld; only greater at lower seed rates when expressed in proportionate terms (e.g. as a percentage of the parents), rather than in absolute terms (e.g. t ha(-1)); and greater in the year with the cooler and wetter summer.
Resumo:
The effects of density (plant spacing) and initial plant size on vegetative growth, flowering and fruiting were studied in the strawberry cultivars Elsanta and Bolero in their first and second years of cropping. The influence of these factors on light use and dry-matter partitioning was investigated. The size of planting material in 'Elsanta' and 'Bolero' slightly affected plant growth and yield, but this effect was not consistent and radiation use efficiency (RUE) and harvest index were unaltered. Plant spacing did not significantly affect the early stages of crop growth, but was important in determining growth and yield later in the season, this effect being more significant in the second year of cropping. Plant growth and yield per plant increased as plant spacing increased from 20 to 30 cm in both 'Elsanta' and 'Bolero', but the highest harvest index and yield per square metre were obtained at the closest spacing. Increased plant spacing also resulted in a greater leaf area and leaf area index. However, light was used less efficiently resulting in a lower RUE and lower harvest index (HI).
Resumo:
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ v ‘conventional’) rotational and agronomic contexts, in each of three years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85cm and 96cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.
Resumo:
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.
Resumo:
Near isogenic lines (NILs) varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cvar Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared at a field site in Berkshire, UK, but within different systems (‘organic’, O, in 2005/06, 2006/07 and 2007/08 growing seasons v. ‘conventional’, C, in 2005/06, 2006/07, 2007/08 and 2008/09). In 2007 and 2008, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added. The contrasting systems allowed NILs to be tested in diverse rotational and agronomic, but commercially relevant, contexts, particularly with regard to the assumed temporal distribution of nitrogen availability, and competition from weeds. For grain, nitrogen-use efficiency (NUE; grain dry matter (DM) yield/available N; where available N=fertilizer N+soil mineral N), recovery of N in the grain (grain N yield/available N), N utilization efficiency to produce grain (NUtEg; grain DM yield/above-ground crop N yield), N harvest index (grain N yield/above-ground crop N yield) and dry matter harvest index (DMHI; grain DM yield/above-ground crop DM yield) all peaked at final crop heights of 800–950 mm. Maximum NUE occurred at greater crop heights in the organic system than in the conventional system, such that even adding just a semi-dwarfing allele (Rht-D1b) to the shortest background, Mercia, reduced NUE in the organic system. The mechanism of dwarfing (gibberellin sensitive or insensitive) made little difference to the relationship between NUE and its components with crop height. For above-ground biomass: dwarfing alleles had a greater effect on DM accumulation compared with N accumulation such that all dwarfing alleles could reduce nitrogen utilization efficiency (NUtE; crop DM yield/crop N yield). This was particularly evident at anthesis in the conventional system when there was no significant penalty for severe dwarfism for N accumulation, despite a 3-tonne (t)/ha reduction in biomass compared to the tallest lines. Differences between genotypes for recovery of N in the grain were thus mostly a function of net N uptake after anthesis rather than of remobilized N. This effect was compounded as dwarfing, except when coupled with Ppd-D1a, was associated with delayed anthesis. In the organic experiments there was greater reliance on N accumulated before anthesis, and genotype effects on NUE were confounded with effects on N accumulated by weeds, which was negatively associated with crop height. Optimum height for maximizing wheat NUE and its components, as manipulated by Rht alleles, thus depend on growing system, and crop utilization (i.e. biomass or grain production).
Resumo:
A UK field experiment compared a complete factorial combination of three backgrounds (cvs Mercia, Maris Huntsman and Maris Widgeon), three alleles at the Rht-B1 locus as Near Isogenic Lines (NILs: rht-B1a (tall), Rht-B1b (semi-dwarf), Rht-B1c (severe dwarf)) and four nitrogen (N) fertilizer application rates (0, 100, 200 and 350 kg N/ha). Linear+exponential functions were fitted to grain yield (GY) and nitrogen-use efficiency (NUE; GY/available N) responses to N rate. Averaged over N rate and background Rht-B1b conferred significantly (P<0.05) greater GY, NUE, N uptake efficiency (NUpE; N in above ground crop / available N) and N utilization efficiency (NUtEg; GY / N in above ground crop) compared with rht-B1a and Rht-B1c. However the economically optimal N rate (Nopt) for N:grain price ratios of 3.5:1 to 10:1 were also greater for Rht-B1b, and because NUE, NUpE and NUtE all declined with N rate, Rht-Blb failed to increase NUE or its components at Nopt. The adoption of semi-dwarf lines in temperate and humid regions, and the greater N rates that such adoption justifies economically, greatly increases land-use efficiency, but not necessarily, NUE.
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS
Resumo:
Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-tovacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental setup and optimization strategy is described for liquid AP-MALDI MS which improves the ionization effi- ciency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2 fmol/lL (0.5 lL, i.e. 1 fmol, deposited on the target) with very low sample consumption in the low nL-range.