12 resultados para Wr-238605
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier– Stokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr , commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to-mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME =APE +KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid for a non-Boussinesq ocean: G(KE) ≈ 1 − ξ Rf ξ Rf Wr, forcing = 1 + (1 − ξ )γmixing ξ γmixing Wr, forcing , where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and ξ is a nonlinearity parameter such that ξ =1 for a linear equation of state (as considered by MW98), but ξ <1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing =0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing =0.2 in the above formula.
Resumo:
There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.
Resumo:
Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 x 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100g fatty acids, C MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
C13H9CuN5OS, monoclinic, P12(1)/c1 (no. 14), a = 9.900(2) angstrom, b = 11.018(1) angstrom, c = 12.861(2) angstrom, beta = 103.55(1)degrees, V = 1363.8 angstrom(3), Z = 4, R-gt(F) = 0.029, wR(ref)(F-2) = 0.088, T = 150 K.
Resumo:
A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.
Resumo:
A quasi-optical technique for characterizing micromachined waveguides is demonstrated with wideband time-resolved terahertz spectroscopy. A transfer-function representation is adopted for the description of the relation between the signals in the input and output port of the waveguides. The time-domain responses were discretized, and the waveguide transfer function was obtained through a parametric approach in the z domain after describing the system with an autoregressive with exogenous input model. The a priori assumption of the number of modes propagating in the structure was inferred from comparisons of the theoretical with the measured characteristic impedance as well as with parsimony arguments. Measurements for a precision WR-8 waveguide-adjustable short as well as for G-band reduced-height micromachined waveguides are presented. (C) 2003 Optical Society of America.
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
A quasi-optical de-embedding technique for characterizing waveguides is demonstrated using wideband time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time domain responses were discretised and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an ARX as well as with a state space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize signal distortion and the noise propagating in the ARX and subspace models. The model identification procedure requires isolation of the phase delay in the structure and therefore the time-domain signatures must be firstly aligned with respect to each other before they are compared. An initial estimate of the number of propagating modes was provided by comparing the measured phase delay in the structure with theoretical calculations that take into account the physical dimensions of the waveguide. Models derived from measurements of THz transients in a precision WR-8 waveguide adjustable short will be presented.
Resumo:
Our differences are three. The first arises from the belief that "... a nonzero value for the optimally chosen policy instrument implies that the instrument is efficient for redistribution" (Alston, Smith, and Vercammen, p. 543, paragraph 3). Consider the two equations: (1) o* = f(P3) and (2) = -f(3) ++r h* (a, P3) representing the solution to the problem of maximizing weighted, Marshallian surplus using, simultaneously, a per-unit border intervention, 9, and a per-unit domestic intervention, wr. In the solution, parameter ot denotes the weight applied to producer surplus; parameter p denotes the weight applied to government revenues; consumer surplus is implicitly weighted one; and the country in question is small in the sense that it is unable to affect world price by any of its domestic adjustments (see the Appendix). Details of the forms of the functions f((P) and h(ot, p) are easily derived, but what matters in the context of Alston, Smith, and Vercammen's Comment is: Redistributivep referencest hatf avorp roducers are consistent with higher values "alpha," and whereas the optimal domestic intervention, 7r*, has both "alpha and beta effects," the optimal border intervention, r*, has only a "beta effect,"-it does not have a redistributional role. Garth Holloway is reader in agricultural economics and statistics, Department of Agricultural and Food Economics, School of Agriculture, Policy, and Development, University of Reading. The author is very grateful to Xavier Irz, Bhavani Shankar, Chittur Srinivasan, Colin Thirtle, and Richard Tiffin for their comments and their wisdom; and to Mario Mazzochi, Marinos Tsigas, and Cal Turvey for their scholarship, including help in tracking down a fairly complete collection of the papers that cite Alston and Hurd. They are not responsible for any errors or omissions. Note, in equation (1), that the border intervention is positive whenever a distortion exists because 8 > 0 implies 3 - 1 + 8 > 1 and, thus, f((P) > 0 (see Appendix). Using Alston, Smith, and Vercammen's definition, the instrument is now "efficient," and therefore has a redistributive role. But now, suppose that the distortion is removed so that 3 - 1 + 8 = 1, 8 = 0, and consequently the border intervention is zero. According to Alston, Smith, and Vercammen, the instrument is now "inefficient" and has no redistributive role. The reader will note that this thought experiment has said nothing about supporting farm incomes, and so has nothing whatsoever to do with efficient redistribution. Of course, the definition is false. It follows that a domestic distortion arising from the "excess-burden argument" 3 = 1 + 8, 8 > 0 does not make an export subsidy "efficient." The export subsidy, having only a "beta effect," does not have a redistributional role. The second disagreement emerges from the comment that Holloway "... uses an idiosyncratic definition of the relevant objective function of the government (Alston, Smith, and Vercammen, p. 543, paragraph 2)." The objective function that generates equations (1) and (2) (see the Appendix) is the same as the objective function used by Gardner (1995) when he first questioned Alston, Carter, and Smith's claim that a "domestic distortion can make a border intervention efficient in transferring surplus from consumers and taxpayers to farmers." The objective function used by Gardner (1995) is the same objective function used in the contributions that precede it and thus defines the literature on the debate about borderversus- domestic intervention (Streeten; Yeh; Paarlberg 1984, 1985; Orden; Gardner 1985). The objective function in the latter literature is the same as the one implied in another literature that originates from Wallace and includes most notably Gardner (1983), but also Alston and Hurd. Amer. J. Agr. Econ. 86(2) (May 2004): 549-552 Copyright 2004 American Agricultural Economics Association This content downloaded on Tue, 15 Jan 2013 07:58:41 AM All use subject to JSTOR Terms and Conditions 550 May 2004 Amer. J. Agr. Econ. The objective function in Holloway is this same objective function-it is, of course, Marshallian surplus.1 The third disagreement concerns scholarship. The Comment does not seem to be cognizant of several important papers, especially Bhagwati and Ramaswami, and Bhagwati, both of which precede Corden (1974, 1997); but also Lipsey and Lancaster, and Moschini and Sckokai; one important aspect of Alston and Hurd; and one extremely important result in Holloway. This oversight has some unfortunate repercussions. First, it misdirects to the wrong origins of intellectual property. Second, it misleads about the appropriateness of some welfare calculations. Third, it prevents Alston, Smith, and Vercammen from linking a finding in Holloway (pp. 242-43) with an old theorem (Lipsey and Lancaster) that settles the controversy (Alston, Carter, and Smith 1993, 1995; Gardner 1995; and, presently, Alston, Smith, and Vercammen) about the efficiency of border intervention in the presence of domestic distortions.
Resumo:
We describe a one-port de-embedding technique suitable for the quasi-optical characterization of terahertz integrated components at frequencies beyond the operational range of most vector network analyzers. This technique is also suitable when the manufacturing of precision terminations to sufficiently fine tolerances for the application of a TRL de-embedding technique is not possible. The technique is based on vector reflection measurements of a series of easily realizable test pieces. A theoretical analysis is presented for the precision of the technique when implemented using a quasi-optical null-balanced bridge reflectometer. The analysis takes into account quantization effects in the linear and angular encoders associated with the balancing procedure, as well as source power and detector noise equivalent power. The precision in measuring waveguide characteristic impedance and attenuation using this de-embedding technique is further analyzed after taking into account changes in the power coupled due to axial, rotational, and lateral alignment errors between the device under test and the instruments' test port. The analysis is based on the propagation of errors after assuming imperfect coupling of two fundamental Gaussian beams. The required precision in repositioning the samples at the instruments' test-port is discussed. Quasi-optical measurements using the de-embedding process for a WR-8 adjustable precision short at 125 GHz are presented. The de-embedding methodology may be extended to allow the determination of S-parameters of arbitrary two-port junctions. The measurement technique proposed should prove most useful above 325 GHz where there is a lack of measurement standards.
Resumo:
This study investigates the relationship between the wind wave climate and the main climate modes of atmospheric variability in the North Atlantic Ocean. The modes considered are the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the East Atlantic Western Russian (EA/WR) pattern and the Scandinavian (SCAN) pattern. The wave dataset consists of buoys records, remote sensing altimetry observations and a numerical hindcast providing significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) for the period 1989–2009. After evaluating the reliability of the hindcast, we focus on the impact of each mode on seasonal wave parameters and on the relative importance of wind-sea and swell components. Results demonstrate that the NAO and EA patterns are the most relevant, whereas EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave climate variability. During their positive phases, both NAO and EA patterns are related to winter SWH at a rate that reaches 1 m per unit index along the Scottish coast (NAO) and Iberian coast (EA) patterns. In terms of winter MWD, the two modes induce a counterclockwise shift of up to 65° per negative NAO (positive EA) unit over west European coasts. They also increase the winter MWP in the North Sea and in the Bay of Biscay (up to 1 s per unit NAO) and along the western coasts of Europe and North Africa (1 s per unit EA). The impact of winter EA pattern on all wave parameters is mostly caused through the swell wave component.