40 resultados para Workflow Managment
em CentAUR: Central Archive University of Reading - UK
Resumo:
Grid workflow authoring tools are typically specific to particular workflow engines built into Grid middleware, or are application specific and are designed to interact with specific software implementations. g-Eclipse is a middleware independent Grid workbench that aims to provide a unified abstraction of the Grid and includes a Grid workflow builder to allow users to author and deploy workflows to the Grid. This paper describes the g-Eclipse Workflow Builder and its implementations for two Grid middlewares, gLite and GRIA, and a case study utilizing the Workflow Builder in a Grid user's scientific workflow deployment.
Resumo:
In the Biodiversity World (BDW) project we have created a flexible and extensible Web Services-based Grid environment for biodiversity researchers to solve problems in biodiversity and analyse biodiversity patterns. In this environment, heterogeneous and globally distributed biodiversity-related resources such as data sets and analytical tools are made available to be accessed and assembled by users into workflows to perform complex scientific experiments. One such experiment is bioclimatic modelling of the geographical distribution of individual species using climate variables in order to predict past and future climate-related changes in species distribution. Data sources and analytical tools required for such analysis of species distribution are widely dispersed, available on heterogeneous platforms, present data in different formats and lack interoperability. The BDW system brings all these disparate units together so that the user can combine tools with little thought as to their availability, data formats and interoperability. The current Web Servicesbased Grid environment enables execution of the BDW workflow tasks in remote nodes but with a limited scope. The next step in the evolution of the BDW architecture is to enable workflow tasks to utilise computational resources available within and outside the BDW domain. We describe the present BDW architecture and its transition to a new framework which provides a distributed computational environment for mapping and executing workflows in addition to bringing together heterogeneous resources and analytical tools.
Resumo:
There has been a clear lack of common data exchange semantics for inter-organisational workflow management systems where the research has mainly focused on technical issues rather than language constructs. This paper presents the neutral data exchanges semantics required for the workflow integration within the AXAEDIS framework and presents the mechanism for object discovery from the object repository where little or no knowledge about the object is available. The paper also presents workflow independent integration architecture with the AXAEDIS Framework.
Resumo:
The paper presents how workflow-oriented, single-user Grid portals could be extended to meet the requirements of users with collaborative needs. Through collaborative Grid portals different research and engineering teams would be able to share knowledge and resources. At the same time the workflow concept assures that the shared knowledge and computational capacity is aggregated to achieve the high-level goals of the group. The paper discusses the different issues collaborative support requires from Grid portal environments during the different phases of the workflow-oriented development work. While in the design period the most important task of the portal is to provide consistent and fault tolerant data management, during the workflow execution it must act upon the security framework its back-end Grids are built on.
Resumo:
This paper presents the on-going research performed in order to integrate process automation and process management support in the context of media production. This has been addressed on the basis of a holistic approach to software engineering applied to media production modelling to ensure design correctness, completeness and effectiveness. The focus of the research and development has been to enhance the metadata management throughout the process in a similar fashion to that achieved in Decision Support Systems (DSS) to facilitate well-grounded business decisions. The paper sets out the aims and objectives and the methodology deployed. The paper describes the solution in some detail and sets out some preliminary conclusions and the planned future work.
Resumo:
Users’ requirements change drives an information system evolution. Consequently, such evolution affects those atomic services which provide functional operations from one state of their composition to another state of composition. A challenging issue associated with such evolution of the state of service composition is to ensure a resultant service composition remaining rational. This paper presents a method of Service Composition Atomic-Operation Set (SCAOS). SCAOS defines 2 classes of atomic operations and 13 kinds of basic service compositions to aid a state change process by using Workflow Net. The workflow net has algorithmic capabilities to compose the required services with rationality and maintain any changes to the services in a different composition also rational. This method can improve the adaptability to the ever changing business requirements of information systems in the dynamic environment.
Resumo:
Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them also involves complicated workflows implemented as shell scripts. A new grid middleware system that is well suited to climate modelling applications is presented in this paper. Grid Remote Execution (G-Rex) allows climate models to be deployed as Web services on remote computer systems and then launched and controlled as if they were running on the user's own computer. Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model. G-Rex has a REST architectural style, featuring a Java client program that can easily be incorporated into existing scientific workflow scripts. Some technical details of G-Rex are presented, with examples of its use by climate modellers.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.
Resumo:
Context: Learning can be regarded as knowledge construction in which prior knowledge and experience serve as basis for the learners to expand their knowledge base. Such a process of knowledge construction has to take place continuously in order to enhance the learners’ competence in a competitive working environment. As the information consumers, the individual users demand personalised information provision which meets their own specific purposes, goals, and expectations. Objectives: The current methods in requirements engineering are capable of modelling the common user’s behaviour in the domain of knowledge construction. The users’ requirements can be represented as a case in the defined structure which can be reasoned to enable the requirements analysis. Such analysis needs to be enhanced so that personalised information provision can be tackled and modelled. However, there is a lack of suitable modelling methods to achieve this end. This paper presents a new ontological method for capturing individual user’s requirements and transforming the requirements onto personalised information provision specifications. Hence the right information can be provided to the right user for the right purpose. Method: An experiment was conducted based on the qualitative method. A medium size of group of users participated to validate the method and its techniques, i.e. articulates, maps, configures, and learning content. The results were used as the feedback for the improvement. Result: The research work has produced an ontology model with a set of techniques which support the functions for profiling user’s requirements, reasoning requirements patterns, generating workflow from norms, and formulating information provision specifications. Conclusion: The current requirements engineering approaches provide the methodical capability for developing solutions. Our research outcome, i.e. the ontology model with the techniques, can further enhance the RE approaches for modelling the individual user’s needs and discovering the user’s requirements.
Resumo:
This paper describes a case study of an electronic data management system developed in-house by the Facilities Management Directorate (FMD) of an educational institution in the UK. The FMD Maintenance and Business Services department is responsible for the maintenance of the built-estate owned by the university. The department needs to have a clear definition of the type of work undertaken and the administration that enables any maintenance work to be carried out. These include the management of resources, budget, cash flow and workflow of reactive, preventative and planned maintenance of the campus. In order to be more efficient in supporting the business process, the FMD had decided to move from a paper-based information system to an electronic system, WREN, to support the business process of the FMD. Some of the main advantages of WREN are that it is tailor-made to fit the purpose of the users; it is cost effective when it comes to modifications on the system; and the database can also be used as a knowledge management tool. There is a trade-off; as WREN is tailored to the specific requirements of the FMD, it may not be easy to implement within a different institution without extensive modifications. However, WREN is successful in not only allowing the FMD to carry out the tasks of maintaining and looking after the built-estate of the university, but also has achieved its aim to minimise costs and maximise efficiency.