3 resultados para Workflow Design

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents how workflow-oriented, single-user Grid portals could be extended to meet the requirements of users with collaborative needs. Through collaborative Grid portals different research and engineering teams would be able to share knowledge and resources. At the same time the workflow concept assures that the shared knowledge and computational capacity is aggregated to achieve the high-level goals of the group. The paper discusses the different issues collaborative support requires from Grid portal environments during the different phases of the workflow-oriented development work. While in the design period the most important task of the portal is to provide consistent and fault tolerant data management, during the workflow execution it must act upon the security framework its back-end Grids are built on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the on-going research performed in order to integrate process automation and process management support in the context of media production. This has been addressed on the basis of a holistic approach to software engineering applied to media production modelling to ensure design correctness, completeness and effectiveness. The focus of the research and development has been to enhance the metadata management throughout the process in a similar fashion to that achieved in Decision Support Systems (DSS) to facilitate well-grounded business decisions. The paper sets out the aims and objectives and the methodology deployed. The paper describes the solution in some detail and sets out some preliminary conclusions and the planned future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.