2 resultados para Work Schedule Tolerance

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processor virtualization for process migration in distributed parallel computing systems has formed a significant component of research on load balancing. In contrast, the potential of processor virtualization for fault tolerance has been addressed minimally. The work reported in this paper is motivated towards extending concepts of processor virtualization towards â˜intelligent coresâ as a means to achieve fault tolerance in distributed parallel computing systems. Intelligent cores are an abstraction of the hardware processing cores, with the incorporation of cognitive capabilities, on which parallel tasks can be executed and migrated. When a processing core executing a task is predicted to fail the task being executed is proactively transferred onto another core. A parallel reduction algorithm incorporating concepts of intelligent cores is implemented on a computer cluster using Adaptive MPI and Charm ++. Preliminary results confirm the feasibility of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.