68 resultados para Wilstach, W. P.
em CentAUR: Central Archive University of Reading - UK
Resumo:
An international survey of clients, consultants and contractors produced wide-ranging data on the views of users of the FIDIC form of contract. The purpose of the survey was to elicit views on a range of issues, prior to revising the model form, to ensure that the contract drafters produce a form that is satisfactory for its users. Those questions that focus upon the role of the engineer have been subjected to detailed statistical analysis. The analysis shows that, contrary to popular belief, the views of contract users from common law jurisdictions do not differ from those in civil code jurisdictions. The engineer’s role is not generally perceived as neutral in the contractual relationships between clients and contractors. Contractors would prefer someone other than the engineer to be the first-line settler of disputes in contracts.
Resumo:
Thirty‐three snowpack models of varying complexity and purpose were evaluated across a wide range of hydrometeorological and forest canopy conditions at five Northern Hemisphere locations, for up to two winter snow seasons. Modeled estimates of snow water equivalent (SWE) or depth were compared to observations at forest and open sites at each location. Precipitation phase and duration of above‐freezing air temperatures are shown to be major influences on divergence and convergence of modeled estimates of the subcanopy snowpack. When models are considered collectively at all locations, comparisons with observations show that it is harder to model SWE at forested sites than open sites. There is no universal “best” model for all sites or locations, but comparison of the consistency of individual model performances relative to one another at different sites shows that there is less consistency at forest sites than open sites, and even less consistency between forest and open sites in the same year. A good performance by a model at a forest site is therefore unlikely to mean a good model performance by the same model at an open site (and vice versa). Calibration of models at forest sites provides lower errors than uncalibrated models at three out of four locations. However, benefits of calibration do not translate to subsequent years, and benefits gained by models calibrated for forest snow processes are not translated to open conditions.
Resumo:
Direct observations from an array of current meter moorings across the Mozambique Channel in the south-west Indian Ocean are presented covering a period of more than 4 years. This allows an analysis of the volume transport through the channel, including the variability on interannual and seasonal time scales. The mean volume transport over the entire observational period is 16.7 Sv poleward. Seasonal variations have a magnitude of 4.1 Sv and can be explained from the variability in the wind field over the western part of the Indian Ocean. Interannual variability has a magnitude of 8.9 Sv and is large compared to the mean. This time scale of variability could be related to variability in the Indian Ocean Dipole (IOD), showing that it forms part of the variability in the ocean-climate system of the entire Indian Ocean. By modulating the strength of the South Equatorial Current, the weakening (strengthening) tropical gyre circulation during a period of positive (negative) IOD index leads to a weakened (strengthened) southward transport through the channel, with a time lag of about a year. The relatively strong interannual variability stresses the importance of long-term direct observations.
Resumo:
A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.
Resumo:
Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.
Resumo:
The Indian Ocean water that ends up in the Atlantic Ocean detaches from the Agulhas Current retroflection predominantly in the form of Agulhas rings and cyclones. Using numerical Lagrangian float trajectories in a high-resolution numerical ocean model, the fate of coherent structures near the Agulhas Current retroflection is investigated. It is shown that within the Agulhas Current, upstream of the retroflection, the spatial distributions of floats ending in the Atlantic Ocean and floats ending in the Indian Ocean are to a large extent similar. This indicates that Agulhas leakage occurs mostly through the detachment of Agulhas rings. After the floats detach from the Agulhas Current, the ambient water quickly looses its relative vorticity. The Agulhas rings thus seem to decay and loose much of their water in the Cape Basin. A cluster analysis reveals that most water in the Agulhas Current is within clusters of 180 km in diameter. Halfway in the Cape Basin there is an increase in the number of larger clusters with low relative vorticity, which carry the bulk of the Agulhas leakage transport through the Cape Basin. This upward cascade with respect to the length scales of the leakage, in combination with a power law decay of the magnitude of relative vorticity, might be an indication that the decay of Agulhas rings is somewhat comparable to the decay of two-dimensional turbulence.
Resumo:
The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression.
Resumo:
The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov–Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10° two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2° global model and a 1/8° assimilative model, might have skill only on some sections in the region
Resumo:
A positive salinity anomaly of 0.2 PSU was observed between 50 and 200 m over the years 2000–2001 across the Mozambique Channel at a section at 17°S which was repeated in 2003, 2005, 2006, and 2008. Meanwhile, a moored array is continued from 2003 to 2008. This anomaly was most distinct showing an interannual but nonseasonal variation. The possible origin of the anomaly is investigated using output from three ocean general circulation models (Estimating the Circulation and Climate of the Ocean, Ocean Circulation and Climate Advanced Modeling, and Parallel Ocean Program). The most probable mechanism for the salinity anomaly is the anomalous inflow of subtropical waters caused by a weakening of the northern part of the South Equatorial Current by weaker trade winds. This mechanism was found in all three numerical models. In addition, the numerical models indicate a possible salinization of one of the source water masses to the Mozambique Channel as an additional cause of the anomaly. The anomaly propagated southward into the Agulhas Current and northward along the African coast.
Resumo:
The existence of inertial steady currents that separate from a coast and meander afterward is investigated. By integrating the zonal momentum equation over a suitable area, it is shown that retroflecting currents cannot be steady in a reduced gravity or in a barotropic model of the ocean. Even friction cannot negate this conclusion. Previous literature on this subject, notably the discrepancy between several articles by Nof and Pichevin on the unsteadiness of retroflecting currents and steady solutions presented in other papers, is critically discussed. For more general separating current systems, a local analysis of the zonal momentum balance shows that given a coastal current with a specific zonal momentum structure, an inertial, steady, separating current is unlikely, and the only analytical solution provided in the literature is shown to be inconsistent. In a basin-wide view of these separating current systems, a scaling analysis reveals that steady separation is impossible when the interior flow is nondissipative (e.g., linear Sverdrup-like). These findings point to the possibility that a large part of the variability in the world’s oceans is due to the separation process rather than to instability of a free jet.