38 resultados para Wave energy production
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper seeks to illustrate the point that physical inconsistencies between thermodynamics and dynamics usually introduce nonconservative production/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs). Such terms potentially give rise to undesirable forces and/or diabatic terms in the momentum and thermodynamic equations, respectively, which could explain some of the observed errors in simulated ocean currents and water masses. In this paper, a theoretical framework is developed to provide a practical method to determine such nonconservative terms, which is illustrated in the context of a relatively simple form of the hydrostatic Boussinesq primitive equation used in early versions of OGCMs, for which at least four main potential sources of energy nonconservation are identified; they arise from: (1) the “hanging” kinetic energy dissipation term; (2) assuming potential or conservative temperature to be a conservative quantity; (3) the interaction of the Boussinesq approximation with the parameterizations of turbulent mixing of temperature and salinity; (4) some adiabatic compressibility effects due to the Boussinesq approximation. In practice, OGCMs also possess spurious numerical energy sources and sinks, but they are not explicitly addressed here. Apart from (1), the identified nonconservative energy sources/sinks are not sign definite, allowing for possible widespread cancellation when integrated globally. Locally, however, these terms may be of the same order of magnitude as actual energy conversion terms thought to occur in the oceans. Although the actual impact of these nonconservative energy terms on the overall accuracy and physical realism of the oceans is difficult to ascertain, an important issue is whether they could impact on transient simulations, and on the transition toward different circulation regimes associated with a significant reorganization of the different energy reservoirs. Some possible solutions for improvement are examined. It is thus found that the term (2) can be substantially reduced by at least one order of magnitude by using conservative temperature instead of potential temperature. Using the anelastic approximation, however, which was initially thought as a possible way to greatly improve the accuracy of the energy budget, would only marginally reduce the term (4) with no impact on the terms (1), (2) and (3).
Resumo:
In dairy cows, an increase in plasma concentration of glucose-dependent insulinotropic polypeptide (GIP) is associated with an increase in metabolizable energy intake, but the role of GIP in energy partitioning of dairy cattle is not certain. The objective of this study was to examine the relationship between plasma GIP concentrations and energy partitioning toward milk production. Four mid-lactation, primiparous, rumenfistulated Holstein-Friesian cows were fed a control diet of 55% forage and 45% concentrate [dry matter (DM) basis] in a 4 × 4 Latin square design with 4-wk periods. The 4 treatments were (1) control diet fed at 1000 and 1600 h, and (2) once-daily (1000 h) feeding, (3) twice daily (1000 and 1600 h) feeding, and (4) 4 times/d (1000, 1600, 2200 and 0400 h) feeding of the control diet plus 1 dose (1.75 kg on a DM basis at 0955 h) into the rumen of supplemental vegetable proteins (Amino Green; SCA NuTec Ltd., Thirsk, UK). Measurements of respiratory exchange and energy balance were obtained over 4 d during the last week of each period while cows were housed in open-circuit respiration chambers. Blood was collected from the jugular vein every 30 min for 12 h, using indwelling catheters, starting at 0800 h on d 20 of each period. Plasma GIP concentration was measured in samples pooled over each 5 consecutive blood samplings. The relationships between plasma GIP, DM intake, heat production, respiratory quotient, milk yield, and milk energy output were analyzed using linear correlation procedures, with metabolizable intake as a partial variant. Plasma GIP concentration was not correlated with heat production, or milk yield, but was positively correlated with milk energy yield (correlation coefficient = 0.67) and negatively correlated with RQ (correlation coefficient = −0.72). The correlations between GIP and RQ and milk energy output do not imply causality, but suggest that a role for GIP may exist in the regulation of energy metabolism in dairy cows.
Resumo:
Climate change is one of the major challenges facing economic systems at the start of the 21st century. Reducing greenhouse gas emissions will require both restructuring the energy supply system (production) and addressing the efficiency and sufficiency of the social uses of energy (consumption). The energy production system is a complicated supply network of interlinked sectors with 'knock-on' effects throughout the economy. End use energy consumption is governed by complex sets of interdependent cultural, social, psychological and economic variables driven by shifts in consumer preference and technological development trajectories. To date, few models have been developed for exploring alternative joint energy production-consumption systems. The aim of this work is to propose one such model. This is achieved in a methodologically coherent manner through integration of qualitative input-output models of production, with Bayesian belief network models of consumption, at point of final demand. The resulting integrated framework can be applied either (relatively) quickly and qualitatively to explore alternative energy scenarios, or as a fully developed quantitative model to derive or assess specific energy policy options. The qualitative applications are explored here.
Resumo:
Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.
Resumo:
The adiabatic transit time of wave energy radiated by an Agulhas ring released in the South Atlantic Ocean to the North Atlantic Ocean is investigated in a two-layer ocean model. Of particular interest is the arrival time of baroclinic energy in the northern part of the Atlantic, because it is related to variations in the meridional overturning circulation. The influence of the Mid-Atlantic Ridge is also studied, because it allows for the conversion from barotropic to baroclinic wave energy and the generation of topographic waves. Barotropic energy from the ring is present in the northern part of the model basin within 10 days. From that time, the barotropic energy keeps rising to attain a maximum 500 days after initiation. This is independent of the presence or absence of a ridge in the model basin. Without a ridge in the model, the travel time of the baroclinic signal is 1300 days. This time is similar to the transit time of the ring from the eastern to the western coast of the model basin. In the presence of the ridge, the baroclinic signal arrives in the northern part of the model basin after approximately 10 days, which is the same time scale as that of the barotropic signal. It is apparent that the ridge can facilitate the energy conversion from barotropic to baroclinic waves and the slow baroclinic adjustment can be bypassed. The meridional overturning circulation, parameterized in two ways as either a purely barotropic or a purely baroclinic phenomenon, also responds after 1300 days. The ring temporarily increases the overturning strength. Th presence of the ridge does not alter the time scales.
Resumo:
Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.
Resumo:
Recent research has shown that Lighthill–Ford spontaneous gravity wave generation theory, when applied to numerical model data, can help predict areas of clear-air turbulence. It is hypothesized that this is the case because spontaneously generated atmospheric gravity waves may initiate turbulence by locally modifying the stability and wind shear. As an improvement on the original research, this paper describes the creation of an ‘operational’ algorithm (ULTURB) with three modifications to the original method: (1) extending the altitude range for which the method is effective downward to the top of the boundary layer, (2) adding turbulent kinetic energy production from the environment to the locally produced turbulent kinetic energy production, and, (3) transforming turbulent kinetic energy dissipation to eddy dissipation rate, the turbulence metric becoming the worldwide ‘standard’. In a comparison of ULTURB with the original method and with the Graphical Turbulence Guidance second version (GTG2) automated procedure for forecasting mid- and upper-level aircraft turbulence ULTURB performed better for all turbulence intensities. Since ULTURB, unlike GTG2, is founded on a self-consistent dynamical theory, it may offer forecasters better insight into the causes of the clear-air turbulence and may ultimately enhance its predictability.
Resumo:
A rapid-distortion model is developed to investigate the interaction of weak turbulence with a monochromatic irrotational surface water wave. The model is applicable when the orbital velocity of the wave is larger than the turbulence intensity, and when the slope of the wave is sufficiently high that the straining of the turbulence by the wave dominates over the straining of the turbulence by itself. The turbulence suffers two distortions. Firstly, vorticity in the turbulence is modulated by the wave orbital motions, which leads to the streamwise Reynolds stress attaining maxima at the wave crests and minima at the wave troughs; the Reynolds stress normal to the free surface develops minima at the wave crests and maxima at the troughs. Secondly, over several wave cycles the Stokes drift associated with the wave tilts vertical vorticity into the horizontal direction, subsequently stretching it into elongated streamwise vortices, which come to dominate the flow. These results are shown to be strikingly different from turbulence distorted by a mean shear flow, when `streaky structures' of high and low streamwise velocity fluctuations develop. It is shown that, in the case of distortion by a mean shear flow, the tendency for the mean shear to produce streamwise vortices by distortion of the turbulent vorticity is largely cancelled by a distortion of the mean vorticity by the turbulent fluctuations. This latter process is absent in distortion by Stokes drift, since there is then no mean vorticity. The components of the Reynolds stress and the integral length scales computed from turbulence distorted by Stokes drift show the same behaviour as in the simulations of Langmuir turbulence reported by McWilliams, Sullivan & Moeng (1997). Hence we suggest that turbulent vorticity in the upper ocean, such as produced by breaking waves, may help to provide the initial seeds for Langmuir circulations, thereby complementing the shear-flow instability mechanism developed by Craik & Leibovich (1976). The tilting of the vertical vorticity into the horizontal by the Stokes drift tends also to produce a shear stress that does work against the mean straining associated with the wave orbital motions. The turbulent kinetic energy then increases at the expense of energy in the wave. Hence the wave decays. An expression for the wave attenuation rate is obtained by scaling the equation for the wave energy, and is found to be broadly consistent with available laboratory data.