2 resultados para Wave Operator

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The density and the flux of wave-activity conservation laws are generally required to satisfy the group-velocity property: under the WKB approximation (i.e., for nearly monochromatic small-amplitude waves in a slowly varying medium), the flux divided by the density equals the group velocity. It is shown that this property is automatically satisfied if, under the WKB approximation, the only source of rapid variations in the density and the flux lies in the wave phase. A particular form of the density, based on a self-adjoint operator, is proposed as a systematic choice for a density verifying this condition.