28 resultados para Water uptake
em CentAUR: Central Archive University of Reading - UK
Resumo:
Growth and water use of sole crops and intercrops of morphologically contrasting maize and pea cultivars were measured in two years. The maize cultivars were Nancis with erectophile and Sophy with planophile leaves and the pea cultivars Maro a leafy pea and Princess a semi-leafless pea. In the first part of the season water use was lower for sole maize but intercrops and sole pea used similar amounts of water. By 90 days after sowing, when peas had matured, all crops had used similar amounts of water. Maize had slightly greater water use efficiency than peas. Cultivars Nancis and Princess tended to have greater water use efficiency than Sophy and Maro respectively. Intercrops produced more dry matter than sole crops and therefore had consistently greater water use efficiencies.
Resumo:
Glutinous rice (or sticky rice) has to be soaked in water over an extended period of time before cooking. Soaking provides some of the water needed for starch gelatinisation to occur during cooking. The extent of water uptake during soaking is known to be influenced by temperature. This paper explores the use of very high pressures up to 600 MPa to accelerate water uptake kinetics during soaking. Changes occurring in length, diameter and moisture content were determined as a function of soaking time, pressure and temperature. The results show that length and diameter are positively correlated with all three parameters. However, the expansion ratios are not very high: the maximum length expansion ratio observed was 1.2, while the maximum diameter expansion ratio was 1. 1. Given these low values, it was possible to model water uptake kinetics by using the well-known Fickian model applied to a finite cylinder, assuming uniform average dimensions and effective diffusion coefficient. The results showed that the overall rates of water uptake and the equilibrium moisture content increased with pressure and temperature. The effective diffusion coefficient, on the other hand, did not follow the same trend. Temperature influenced the effective diffusion coefficient below 300 MPa, but had a marginal effect at higher pressures. Moreover, the effective diffusion coefficient increased with temperature between 20 and 50 degrees C, but dropped at higher temperatures. This drop can be attributed to the gelatinisation of starch, which restricts the transport of water. Regardless, it is possible to increase the quantity of water absorbed by rice and the rate at which it is absorbed, by using high pressures and temperatures. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The monitoring of water uptake in plants is becoming increasingly important. Optical sensors offer considerable advantages over conventional methods and several sensors have been developed including an optical potometer that monitors water uptake from individual roots, the detection of xylem cavitation using audio acoustic emissions with an interferometric force feedback microphone, and an optical fiber displacement transducer that detects changes in leaf thickness in relation to leaf-water potential.
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
Reactions of CuF2, CuCl2 center dot 2H(2)O and CuBr2 with 2,2'-dipyridylamine (HDPA) in water at room temperature using Cu: HDPA = 2: 1 mol yield [Cu(HDPA) (H2O)(2)F]F center dot 3H(2)O (1), Cu(HDPA) Cl-2 (2) and [Cu(HDPA) Br-2 (3) respectively. The structures of 2 and 3 are isostructural in spacegroup C-2 with cell dimensions; for 2, a = 14.702(8), b = 7.726(2), c = 4.829(6) angstrom, beta = 96.68(8)degrees and for 3, a = 14.2934(8), b = 7.9057(6), c = 5.1982(5) angstrom, beta = 94.049(7)degrees. In the X-ray crystal structure, the complex 1 is found to contain tapes of water pentamers. Our DFT calculations at the B3LYP/LanL2DZ level show that the reaction Cu(HDPA)X-2 + 2H(2)O = [Cu(HDPA)(H2O)(2)X]X is most exothermic in the gas phase when X- = F-, i.e., the tendency of water uptake is maximum for Cu(HDPA) F-2. It seems that the exothermicities of the aquations of Cu(HDPA) Cl-2 and Cu(HDPA) Br-2 are not sufficient to stabilise the type of ribbons of water observed in 1 and consequently water is eschewed when X- = Cl- or Br-.
Resumo:
Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A case study of atmospheric aerosol measurements exploring the impact of the vertical distribution of aerosol chemical composition upon the radiative budget in North-Western Europe is presented. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) on both an airborne platform and a ground-based site at Cabauw in the Netherlands. The examined period in May 2008 was characterised by enhanced pollution loadings in North-Western Europe and was dominated by ammonium nitrate and Organic Matter (OM). Both ammonium nitrate and OM were observed to increase with altitude in the atmospheric boundary layer. This is primarily attributed to partitioning of semi-volatile gas phase species to the particle phase at reduced temperature and enhanced relative humidity. Increased ammonium nitrate concentrations in particular were found to strongly increase the ambient scattering potential of the aerosol burden, which was a consequence of the large amount of associated water as well as the enhanced mass. During particularly polluted conditions, increases in aerosol optical depth of 50–100% were estimated to occur due to the observed increase in secondary aerosol mass and associated water uptake. Furthermore, the single scattering albedo was also shown to increase with height in the boundary layer. These enhancements combined to increase the negative direct aerosol radiative forcing by close to a factor of two at the median percentile level. Such increases have major ramifications for regional climate predictions as semi-volatile components are often not included in aerosol models. The results presented here provide an ideal opportunity to test regional and global representations of both the aerosol vertical distribution and subsequent impacts in North-Western Europe. North-Western Europe can be viewed as an analogue for the possible future air quality over other polluted regions of the Northern Hemisphere, where substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.
Resumo:
A new automatic feedback potometer for physiological studies of water uptake by root systems is described. A dual-optical-fibre amplitude-modulating displacement transducer of improved sensitivity is employed to detect the changes in liquid level. The merits of optimal double-cut fibres, which make full use of the critical angle and improve coupling between the emitter and the receiver, have resulted in a sensor that is 64 times more responsive than the simple emitter - detector probe. Positioning the optical fibre transducer in a narrow capillary and using feedback to control the liquid level allows continuous measurement of volumes in the nanolitre range. The optical sensor used does not need re-calibration for the different salt solutions used in such studies.
Resumo:
Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Therefore, understanding the development and architecture of roots holds potential for the manipulation of root traits to improve the productivity and sustainability of agricultural systems and to better understand and manage natural ecosystems. While lateral root development is a traceable process along the primary root and different stages can be found along this longitudinal axis of time and development, root system architecture is complex and difficult to quantify. Here, we comment on assays to describe lateral root phenotypes and propose ways to move forward regarding the description of root system architecture, also considering crops and the environment.
Resumo:
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Scattering and absorption by aerosol in anthropogenically perturbed air masses over Europe has been measured using instrumentation flown on the UK’s BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM) on 14 flights during the EUCAARI-LONGREX campaign in May 2008. The geographical and temporal variations of the derived shortwave optical properties of aerosol are presented. Values of single scattering albedo of dry aerosol at 550 nm varied considerably from 0.86 to near unity, with a campaign average of 0.93 ± 0.03. Dry aerosol optical depths ranged from 0.030 ± 0.009 to 0.24 ± 0.07. An optical properties closure study comparing calculations from composition data and Mie scattering code with the measured properties is presented. Agreement to within measurement uncertainties of 30% can be achieved for both scattering and absorption,but the latter is shown to be sensitive to the refractive indices chosen for organic aerosols, and to a lesser extent black carbon, as well as being highly dependent on the accuracy of the absorption measurements. Agreement with the measured absorption can be achieved either if organic carbon is assumed to be weakly absorbing, or if the organic aerosol is purely scattering and the absorption measurement is an overestimate due to the presence of large amounts of organic carbon. Refractive indices could not be inferred conclusively due to this uncertainty, despite the enhancement in methodology compared to previous studies that derived from the use of the black carbon measurements. Hygroscopic growth curves derived from the wet nephelometer indicate moderate water uptake by the aerosol with a campaign mean f (RH) value (ratio in scattering) of 1.5 (range from 1.23 to 1.63) at 80% relative humidity. This value is qualitatively consistent with the major chemical components of the aerosol measured by the aerosol mass spectrometer, which are primarily mixed organics and nitrate and some sulphate.
Resumo:
The complexation of Cu by sewage sludge-derived dissolved organic matter (SSDOM) is a process by which the environmental significance of the element may become enhanced due to reduced soil sorption and, hence, increased mobility. The work described in this paper used an ion selective electrode procedure to show that SSDOM complexation of Cu was greatest at intermediate pH values because competition between hydrogen ions and Cu for SSDOM binding sites, and between hydroxyl ions and SSDOM as Cu ligands, was lowest at such values. Batch sorption experiments further showed that the process of Cu complexation by SSDOM provided an explanation for enhanced desorption of Cu from the solid phase of a contaminated, organic matter-rich, clay loam soil, and reduced adsorption of Cu onto the solid phase of a sandy loam soil. Complexation of Cu by SSDOM did not affect uptake of Cu by spring barley plants, when compared to free ionic Cu, in a sand-culture pot experiment. However, it did appear to lead to greater biomass yields of the plant; perhaps indicating that the Cu-SSDOM complex had a lower toxicity towards the plant than the free Cu ion.
Resumo:
An expert elicitation exercise was undertaken to determine those components and processes that are most important for modeling plant uptake of organic chemicals. The state of our knowledge of these processes was also assessed. This semi-quantitative analysis allowed the construction of an idealized model with seven compartments; soil bulk, soil water, roots, stem, leaves, fruit, and air. Three main areas were identified further research: 1) the uptake of organic chemicals by fruit; 2) the internal transfer of organic chemicals between plant structures (e.g., stem and leaves); and 3) the transfer via the soil-air-plant pathway. Until new data becomes available to quantify these processes, it is proposed that an equilibrium partitioning approach is used between plant components other than fruit or that models consist of both an edible and inedible compartment.
Resumo:
This paper investigates phosphorus (P) transport and transformation dynamics in two contrasting sub-catchments of the River Kennel, England. Samples were collected daily under baseflow and hourly under stormflow conditions using autosamplers for 2 years and analysed for a range of determinands (full P fractionation, suspended sediment (SS), cations, pH, alkalinity, temperature and oxygen). Concentrations of SRP, SUP, PP and SS were higher in the flashy River Enborne (means of 0.186, 0.071, 0.101 and 34 mg l(-1), respectively) than the groundwater-fed River Lambourn (0.079, 0.057, 0.028 and 9 mg l(-1), respectively). A seasonal trend in the daily P dataset was evident, with lower concentrations during intermediate flows and the spring (caused by a dilution effect and macrophyte uptake) than during baseflow conditions. However, in the hourly P dataset, highest concentrations were observed during storm events in the autumn and winter (reflecting higher scour with increased capacity to entrain particles). Storm events were more significant in contributing to the total P load in the River Enborne than the River Lambourn, especially during August to October, when dry antecedent conditions were observed in the catchment. Re-suspension of P-rich sediment that accumulated within the channel during summer low flows might account for these observations. It is suggested that a P-calcite co-precipitation mechanism was operating during summer in the River Lambourn, while adsorption by metal oxyhydroxide groups was an important mechanism controlling P fractionation in the River Enborne. The influence of flow conditions and channel storage/release mechanisms on P dynamics in these two lowland rivers is assessed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The distribution of tracers in the ocean is often taken as an indication of the ventilation pathways for oceanic water masses. It has been suggested that under anthropogenic forcing heat will be taken up into the interior of the ocean along isopycnal ventilation pathways. This notion is investigated by examining distributions of potential temperature and a passive anomaly temperature tracer in a coupled climate experiment where CO2 is increased at a rate of 2% per year. We show that interior temperature changes cannot be explained solely by passive tracer transport along isopycnals. Heat uptake is strongly affected by changes in circulation and has a substantial diapycnal component.