8 resultados para Water supplies

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change in the UK is expected to cause increases in temperatures, altered precipitation patterns and more frequent and extreme weather events. In this review we discuss climate effects on dissolved organic matter (DOM), how altered DOM and water physico-chemical properties will affect treatment processes and assess the utility of techniques used to remove DOM and monitor water quality. A critical analysis of the literature has been undertaken with a focus on catchment drivers of DOM character, removal of DOM via coagulation and the formation of disinfectant by-products (DBPs). We suggest that: (1) upland catchments recovering from acidification will continue to produce more DOM with a greater hydrophobic fraction as solubility controls decrease; (2) greater seasonality in DOM export is likely in future due to altered precipitation patterns; (3) changes in species diversity and water properties could encourage algal blooms; and (4) that land management and vegetative changes may have significant effects on DOM export and treatability but require further research. Increases in DBPs may occur where catchments have high influence from peatlands or where algal blooms become an issue. To increase resilience to variable DOM quantity and character we suggest that one or more of the following steps are undertaken at the treatment works: a) ‘enhanced coagulation’ optimised for DOM removal; b) switching from aluminium to ferric coagulants and/or incorporating coagulant aids; c) use of magnetic ion-exchange (MIEX) pre-coagulation; and d) activated carbon filtration post-coagulation. Fluorescence and UV absorbance techniques are highlighted as potential methods for low-cost, rapid on-line process optimisation to improve DOM removal and minimise DBPs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is now accepted that some human-induced climate change is unavoidable. Potential impacts on water supply have received much attention, but relatively little is known about the concomitant changes in water quality. Projected changes in air temperature and rainfall could affect river flows and, hence, the mobility and dilution of contaminants. Increased water temperatures will affect chemical reaction kinetics and, combined with deteriorations in quality, freshwater ecological status. With increased flows there will be changes in stream power and, hence, sediment loads with the potential to alter the morphology of rivers and the transfer of sediments to lakes, thereby impacting freshwater habitats in both lake and stream systems. This paper reviews such impacts through the lens of UK surface water quality. Widely accepted climate change scenarios suggest more frequent droughts in summer, as well as flash-flooding, leading to uncontrolled discharges from urban areas to receiving water courses and estuaries. Invasion by alien species is highly likely, as is migration of species within the UK adapting to changing temperatures and flow regimes. Lower flows, reduced velocities and, hence, higher water residence times in rivers and lakes will enhance the potential for toxic algal blooms and reduce dissolved oxygen levels. Upland streams could experience increased dissolved organic carbon and colour levels, requiring action at water treatment plants to prevent toxic by-products entering public water supplies. Storms that terminate drought periods will flush nutrients from urban and rural areas or generate acid pulses in acidified upland catchments. Policy responses to climate change, such as the growth of bio-fuels or emission controls, will further impact freshwater quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The two earliest structures of Minoan Crete that may be considered as large cisterns were both built in the first half of the second millennium BC (the time of the first Minoan palaces) at Myrtos-Pyrgos (lerapetra). A considerable feat of engineering and social management, they remain a most unusual attribute of a Minoan settlement, all the more so since the Myrtos river is/was available to supply water at the foot of the hill of Pyrgos. This paper presents these cisterns, briefly, in terms of geology and technology, the history of their use and re-use, and their relevance to understanding the culture and society (at local and regional levels) of Crete in the time of the Old Palaces, as well as their possible contribution to the political and military history of the period. I then review possible precursors of, and architectural parallels to, the Pyrgos cisterns at Knossos, Malia and Phaistos (none of which has been proved to be a cistern), and the later history of cisterns in Bronze Age Crete. Since only three others are known (at Archanes, Zakro and Tylissos, of Late Bronze Age date), the two cisterns of Myrtos-Pyrgos are an important addition to our still rudimentary knowledge of how the Bronze Age Cretans managed their water supplies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate change is expected to produce reductions in water availability in England, potentially necessitating adaptive action by the water industry to maintain supplies. As part of Ofwat's fifth Periodic Review (PR09), water companies recently released their draft Water Resources Management Plans, setting out how each company intends to maintain the balance between the supply and demand for water over the next 25 years, following Environment Agency guidelines. This paper reviews these plans to determine company estimates of the impact of climate change on water supply relative to other resource pressures. The approaches adopted for incorporating the impact in the plans and the proposed management solutions are also identified. Climate change impacts for individual resource zones range from no reductions in deployable output to greater than 50% over the planning period. The estimated national aggregated loss of deployable output under a “core” climate scenario is ~520 Ml/d (3% of deployable output) by 2034/35, the equivalent of the supply of one entire water company (South West Water). Climate change is the largest single driver of change in water supplies over the planning period. Over half of the climate change impact is concentrated in southern England. In extreme cases, climate change uncertainty is of the same magnitude as the change under the core scenario (up to a loss of ~475 Ml/d). 44 of the 68 resource zones with available data are estimated to have a climate change impact. In 35 of these climate change has the greatest impact although in 10 zones sustainability reductions have a greater impact. Of the overall change in downward pressure on the supply-demand balance over the planning period, ~56% is accounted for by increased demand (620 Ml/d) and supply side climate change accounts for ~37% (407 Ml/d). Climate change impacts have a cumulative impact in concert with other changing supply side reducing components increasing the national pressure on the supply-demand balance. Whilst the magnitude of climate change appears to justify its explicit consideration, it is rare that adaptation options are planned solely in response to climate change but as a suite of options to provide a resilient supply to a range of pressures (including significant demand side pressures). Supply-side measures still tend to be considered by water companies to be more reliable than demand-side measures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Public water supplies in England and Wales are provided by around 25 private-sector companies, regulated by an economic regulator (Ofwat) and and environmental regulator (Environment Agency). As part of the regulatory process, companies are required periodically to review their investment needs to maintain safe and secure supplies, and this involves an assessment of the future balance between water supply and demand. The water industry and regulators have developed an agreed set of procedures for this assessment. Climate change has been incorporated into these procedures since the late 1990s, although has been included increasingly seriously over time and it has been an effective legal requirement to consider climate change since the 2003 Water Act. In the most recent assessment in 2009, companies were required explicitly to plan for a defined amount of climate change, taking into account climate change uncertainty. A “medium” climate change scenario was defined, together with “wet” and “dry” extremes, based on scenarios developed from a number of climate models. The water industry and its regulators are now gearing up to exploit the new UKCP09 probabilistic climate change projections – but these pose significant practical and conceptual challenges. This paper outlines how the procedures for incorporating climate change information into water resources planning have evolved, and explores the issues currently facing the industry in adapting to climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improving plant quality and the uniformity of a crop are major objectives for growers of ornamental nursery stock. The potential to control excess vigour and to improve quality through regulated deficit irrigation (RDI) was investigated using a range of woody ornamental species. RDI regimes reduced vegetative growth consistently across different species and growing seasons. Plants adapted to reduced water supplies primarily via stomatal control, but also by osmotic adjustment when grown under the most severe RDI regimes. Only plants exposed to <= 25% of potential evapo-transpiration demonstrated any evidence of leaf injury, and the extent was slight. Growth inhibition increased as the severity of RDI increased. Improvements in quality were attained through a combination of shorter internodes and final shoot lengths, yet the number of 'formative' primary shoots remained unaffected. Compact, well-branched plants could be formed without a requirement for mid-season pruning. In addition to severity, the timing of RDI also influenced growth responses. Applying 50% ETp for 8 weeks during July-August resulted in the formation of good quality plants, which retained their shape until the following Spring. Re-positioning irrigation drippers within the pots of well-watered plants, in an attempt to induce a partial root drying (PRD) treatment, reduced growth, but not significantly. The adoption of irrigation scheduling, based on 50-100% ETp, has the potential to improve commercial crop quality across a range of ornamental species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Groundwater is an important resource in the UK, with 45% of public water supplies in the Thames Water region derived from subterranean sources. In urban areas, groundwater has been affected by onthropogenic activities over 0 long period of time and from a multitude of sources, At present, groundwater quality is assessed using a range of chemical species to determine the extent of contamination. However, analysing a complex mixture of chemicals is time-consuming and expensive, whereas the use of an ecotoxicity test provides information on (a) the degree of pollution present in the groundwater and (b) the potential effect of that pollution. Microtox (TM), Eclox (TM) and Daphnia magna microtests were used in conjunction with standard chemical protocols to assess the contamination of groundwaters from sites throughout the London Borough of Hounslow and nearby Heathrow Airport. Because of their precision, range of responses and ease of use, Daphnia magna and Microfox (TM) tests are the bioassays that appear to be most effective for assessing groundwater toxicity However, neither test is ideal because it is also essential to monitor water hardness. Eclox (TM) does not appear to be suitable for use in groundwater-quality assessment in this area, because it is adversely affected by high total dissolved solids and electrical conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assessments concerning the effects of climate change, water resource availability and water deprivation in West Africa have not frequently considered the positive contribution to be derived from collecting and reusing water for domestic purposes. Where the originating water is taken from a clean water source and has been used the first time for washing or bathing, this water is commonly called “greywater”. Greywater is a prolific resource that is generated wherever people live. Treated greywater can be used for domestic cleaning, for flushing toilets where appropriate, for washing cars, sometimes for watering kitchen gardens, and for clothes washing prior to rinsing. Therefore, a large theoretical potential exists to increase total water resource availability if greywater were to be widely reused. Locally treated greywater reduces the distribution network requirement, lower construction effort and cost and, wherever possible, minimising the associated carbon footprint. Such locally treated greywater offers significant practical opportunities for increasing the total available water resources at a local level. The reuse of treated greywater is one important action that will help to mitigate the reducing availability of clean water supplies in some areas, and the expected mitigation required in future aligns well with WHO/UNICEF (2012) aspirations. The evaluation of potential opportunities for prioritising greywater systems to support water reuse takes into account the availability of water resources, water use indicators and published estimates in order to understand typical patterns of water demand. The approach supports knowledge acquisition regarding local conditions for enabling capacity building for greywater reuse, the understanding of systems that are most likely to encourage greywater reuse, and practices and future actions to stimulate greywater infrastructure planning, design and implementation. Although reuse might be considered to increase the uncertainty of achieving a specified quality of the water supply, robust methods and technologies are available for local treatment. Resource strategies for greywater reuse have the potential to consistently improve water efficiency and availability in water impoverished and water stressed regions of Ghana and West Africa. Untreated greywater is referred to as “greywater”; treated greywater is referred to as “treated greywater” in this paper.