5 resultados para Water resilience

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change in the UK is expected to cause increases in temperatures, altered precipitation patterns and more frequent and extreme weather events. In this review we discuss climate effects on dissolved organic matter (DOM), how altered DOM and water physico-chemical properties will affect treatment processes and assess the utility of techniques used to remove DOM and monitor water quality. A critical analysis of the literature has been undertaken with a focus on catchment drivers of DOM character, removal of DOM via coagulation and the formation of disinfectant by-products (DBPs). We suggest that: (1) upland catchments recovering from acidification will continue to produce more DOM with a greater hydrophobic fraction as solubility controls decrease; (2) greater seasonality in DOM export is likely in future due to altered precipitation patterns; (3) changes in species diversity and water properties could encourage algal blooms; and (4) that land management and vegetative changes may have significant effects on DOM export and treatability but require further research. Increases in DBPs may occur where catchments have high influence from peatlands or where algal blooms become an issue. To increase resilience to variable DOM quantity and character we suggest that one or more of the following steps are undertaken at the treatment works: a) ‘enhanced coagulation’ optimised for DOM removal; b) switching from aluminium to ferric coagulants and/or incorporating coagulant aids; c) use of magnetic ion-exchange (MIEX) pre-coagulation; and d) activated carbon filtration post-coagulation. Fluorescence and UV absorbance techniques are highlighted as potential methods for low-cost, rapid on-line process optimisation to improve DOM removal and minimise DBPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticipation is increasingly central to urgent contemporary debates, from climate change to the global economic crisis. Anticipatory practices are coming to the forefront of political, organizational, and citizens’ society. Research into anticipation, however, has not kept pace with public demand for insights into anticipatory practices, their risks and uses. Where research exists, it is deeply fragmented. This paper seeks to identify how anticipation is defined and understood in the literature and to explore the role of anticipatory practice to address individual, social, and global challenges. We use a resilience lens to examine these questions. We illustrate how varying forms of anticipatory governance are enhanced by multi-scale regional networks and technologies and by the agency of individuals, drawing from an empirical case study on regional water governance of Mälaren, Sweden. Finally, we discuss how an anticipatory approach can inform adaptive institutions, decision making, strategy formation, and societal resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change.