65 resultados para Water activity measurement
em CentAUR: Central Archive University of Reading - UK
Resumo:
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.
Resumo:
Colorectal cancer (CRC) is a leading cause of cancer incidence worldwide. Lifestyle factors, especially dietary intake, affect the risk of CRC development. Suitable risk biomarkers are required in order to assess the effect that specific dietary components have on CRC risk. The relationship between dietary intake and indicators of fecal water activity has been assessed using cell and animal models as well as human studies. This review summarizes the literature on fecal water and dietary components with a view to establishing further the potential role of fecal water as a source of CRC risk biomarkers. The literature indicates that fecal water activity markers are affected by specific dietary components linked with CRC risk: red meat, saturated fats, bile acids, and fatty acids are associated with an increase in fecal water toxicity, while the converse appears to be true for calcium, probiotics, and prebiotics. However, it must be acknowledged that the study of fecal water is still in its infancy and a number of issues need to be addressed before its usefulness can be truly gauged.
Resumo:
This work discusses the use of a THz-transient spectrometer for the measurement of tissue water content. The relation of both mammalian- and plant-cell water content to the osmotic potential is discussed. The process of equilibration of tissue water potential with the water potential of water vapor in an osmometer cuvette is described. Observation of the THz transmittance through the water vapor provides a measure of the water activity and water potential in the sample. The possibility of performing dielectric relaxation measurements of the liquid water in the tissue at THz frequencies directly and the use of proline as marker of water stress in tissue are discussed.
Resumo:
Flake breakage and texture are important quality, criteria in oat flakes. These properties are determined by the mechanical properties of the flakes, which may be influenced by process variables such as kilning and flake thickness. A pin deformation method was used to measure the rupture force of individual oat flakes at different water activities. The monolayer value of ground oat flakes ranged from 5.83 to 684 g/100 g dry matter Thick flakes were strongest, requiring 3.4 N to rupture the flake compared to 2.2 N for the thin flakes. Water softened the flakes, causing a decrease in rupture force from 3.6 N to 2.4 N as water activity; increased from 0.115 to 0.848. Kilning had a significant effect on flake thickness but not on the mechanical properties. This study suggests that oat flakes should be stored at water activity 0.4 or less as there is a sharp loss of flake strength above this point.
Resumo:
The effect of High Hydrostatic Pressure (HHP) on the survival of Cronobacter sakazakii was investigated. Deviations from linearity were found on the survival curves and the Mafart equation accurately described the kinetics of inactivation. Comparisons between strains and treatments were made based on the time needed for a 5-log10 reduction in viable count. The ability of C. sakazakii to tolerate high pressure was straindependent with a 26-fold difference in resistance among four strains tested. Pressure resistance was greatest in the stationary growth phase and at the highest growth temperatures tested (30 and 37 °C). Cells treated in neutral pH buffer were 5-fold more resistant than those treated at pH 4.0, and 8-fold more sensitive than those treated in buffer with sucrose added (aw=0.98). Pressure resistance data obtained in buffer at the appropriate pH adequately estimated the resistance of C. sakazakii in chicken and vegetables soups. In contrast, a significant protective effect against high pressure was conferred by rehydrated powdered milk. As expected, treatment efficacy improved as pressure increased. z values of 112, 136 and 156 MPa were obtained for pH 4.0, pH 7.0 and aw=0.98 buffers, respectively. Cells with sublethal injury to their outer and cytoplasmic membranes were detected after HHP under all the conditions tested. The lower resistance of C. sakazakii cells when treated in media of pH 4.0 seemed to be due to a decreased barostability of the bacterial envelopes. Conversely, the higher resistance displayed in media of reduced water activity may relate to a higher stability of bacterial envelopes.
Resumo:
The aim of this study was to investigate the survival of freeze dried Lactobacillus plantarum cells mixed with several freeze dried instant fruit powders (strawberry, pomegranate, blackcurrant and cranberry) during storage for 12 months as well as after reconstitution with water each month. Inulin and gum arabic were also added to the instant fruit powders at two levels (10% and 20% w/w of dry weight) to improve the cell survival and functional properties of the product. The best cell survival over the 12 months of storage was observed for the blackcurrant powder (almost no decrease) followed by strawberry (~ 0.3 log decrease), pomegranate (~ 0.9 log decrease), whereas the worst survival was obtained in cranberry powder (~ 4.5 logs). To explain these results multiple regression analysis was conducted with the log decrease [log10N0 month − log10N12 months] as the dependent variable and water activity, pH, citric acid, dietary fibre and total phenol as the independent variables. The results indicated that among all the examined factors, the [log10N0 month − log10N12 months] depended only on the water activity (P < 0.05). Inulin and gum arabic demonstrated a substantial protective effect on cell survival (1–1.5 log) in the case of cranberry, which was likely due to a physical interaction between the cells and the carbohydrates. After reconstituting the dried fruit powders at room temperature and measuring cell viability for up to 4 h, it was shown that in the case of strawberry juice there was no decrease, and very little in the case of pomegranate and blackcurrant juices (< 0.5 log). On the other hand, a significant decrease was observed for cranberry juice (P < 0.05), which increased as the storage time of the dried cranberry powder increased, indicating that the cells became more susceptible with prolonged storage. Multiple regression analysis indicated that the main factors influencing cell survival were water activity and pH, while citric acid, dietary fibre and total phenol did not have an effect. Furthermore, inulin and gum arabic addition did not have a significant (P > 0.05) effect upon reconstitution of the dried fruit powder. This study showed that instant juice powders are very good carriers of probiotic cells and constitute good alternatives to highly acidic fruit juices.
Resumo:
The aim of this study was to evaluate the effects of inulin as fat replacer on short dough biscuits and their corresponding doughs. A control formulation, with no replacement, and four formulations in which 10, 20, 30, and 40 % of shortening was replaced by inulin were studied. In the dough, shortening was observed surrounding flour components. At higher fat replacement levels, flour was more available for hydration leading to significant (P<0.05) harder doughs: from 2.76 (0.12)N in 10 % fat-replaced biscuits to 5.81 (1.56)N in 30 % fat-replaced ones. Biscuit structure was more continuous than dough structure. A continuous fat layer coated the matrix surface, where starch granules were embedded. In general, weight loss during baking and water activity decreased significantly (P<0.05) as fat replacement increased. Biscuit dimensions and aeration decreased when fat replacement increased, e.g., width gain was +1.20 mm in 10 fat-replaced biscuits and only +0.32 mm in 40 % fat-replaced ones. Panelist found biscuits with 20 % of fat replacement slightly harder than control biscuits. It can be concluded that shortening may be partially replaced, up to 20 %, with inulin. These low fat biscuits are similar than the control biscuits, and they can have additional health benefits derived from inulin presence.
Resumo:
This study investigated the stability of freeze dried and fluid bed dried alginate microcapsules coated with chitosan containing model probiotic bacteria, Lactobacillus plantarum, during storage for up to 45 days at different water activities (0.11, 0.23, 0.40 and 0.70) and temperatures (4, 30 and 37 °C). The loss in cell viability was around 0.8 log in the case of fluid bed drying and around 1.3 in the case of freeze drying, with the former method resulting in dried capsules of smaller size (~ 1 mm vs 1.3 mm), more irregular shape, and with a rougher surface. In both cases, the water activity and water content were less than 0.25 and 10% w/w, respectively, which favours high storage stability. The storage stability studies demonstrated that as the water activity and temperature decreased the survival of the dried encapsulated cells increased. Considerably better survival was observed for fluid bed dried encapsulated cells compared to freeze dried encapsulated cells and freeze dried free cells with 10% sucrose (control), and in some cases, e.g. at 4 and 30 °C at water activities of 0.11, 0.23 and 0.40, there was more than 1 log difference after 45 days, with concentrations higher than 108 CFU/g after 45 days of storage. The results indicate that fluid bed drying is an effective and efficient manufacturing method to produce probiotic containing capsules with enhanced storage stability.
Resumo:
The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.
Resumo:
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.
Resumo:
Model oil-in-water emulsions containing epicatechin (EC) and epigallocatechin gallate (EGCG) showed a synergistic increase in stability in emulsions containing added albumin. EGCG showed a stronger synergy (35%) with ovalbumin than did EC. Oxidation of the oil was monitored by determining peroxide values and hexanal contents. The effect of bovine serum albumin (BSA) on model oil-in-water emulsions containing each of the green tea catechins [epicatechin gallate (ECG), EGCG, EC and epigallocatechin (EGC)] was studied during storage at 30 degrees C. The green tea catechins showed moderate antioxidant activity in the emulsions with the order of activity being ECG approximate to EGCG > EC > EGC. Although BSA had very little antioxidant activity in the absence of phenolic antioxidants, the combination of BSA with each of the catechins showed strong antioxidant activity. BSA, in combination with EC, EGCG or EGC, showing the strongest antioxidant activity with good stability after 45 days storage. Model experiments with the catechins stored with BSA in aqueous solutions confirmed that protein-catechin adducts with antioxidant activity were formed between the catechins and protein. The antioxidant activity of the separated protein-catechin adducts increased strongly with storage time and was stronger for EGCG and ECG than for EC or EGC. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Antioxidant properties in food are dependent on various parameters. These include the pH value and interactions with food components, including proteins or metal ions. food components affect antioxidant stability and also influence the properties of microorganisms and their viability. This paper describes an investigation of the effect of pH on the antioxidant and antibacterial properties of caffeic acid in different media. The pH values studied, using an oil-in-water emulsion as model system, were 3, 5 (with and without phosphate buffer), and 9. Effects of mixtures of caffeic acid, bovine serum albumin (BSA), and Fe (III) on oxidative deterioration in the emulsion samples were studied. The results show that the antioxidant activity of caffeic acid was increased by the presence of BSA. This effect was pH dependent and was affected by the presence of iron Ions. Antibacterial properties were also pH dependent. The minimum concentration of caffeic acid required to inhibit some microorganisms in the pH range of 5 to 7 was determined. A concentration of 0.41% (w/w) caffeic acid was enough to inhibit the growth of some of the studied microorganisms in the pH range of 5 to 7. However, near-neutral pH concentrations higher than 0.4% were needed to inhibit some microorganisms, including Listeria monocytogenes, E. coli, and Staphylococcus aureus, in the medium.
Resumo:
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Net- work (AERONET) routinely monitor clouds using zenith ra- diances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m−2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m−2 at the ARM Oklahoma site during 2007– 2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22 % are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11 % with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Resumo:
A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model
Resumo:
Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.