26 resultados para Water Purification Oxidation
em CentAUR: Central Archive University of Reading - UK
Resumo:
A focused library of potential hydrogelators each containing two substituted aromatic residues separated by a urea or thiourea linkage have been synthesised and characterized. Six of these novel compounds are highly efficient hydrogelators, forming gels in aqueous solution at low concentrations (0.03–0.60 wt %). Gels were formed through a pH switching methodology, by acidification of a basic solution (pH 14 to ≈4) either by addition of HCl or via the slow hydrolysis of glucono-δ-lactone. Frequently, gelation was accompanied by a dramatic switch in the absorption spectra of the gelators, resulting in a significant change in colour, typically from a vibrant orange to pale yellow. Each of the gels was capable of sequestering significant quantities of the aromatic cationic dye, methylene blue, from aqueous solution (up to 1.02 g of dye per gram of dry gelator). Cryo-transmission electron microscopy of two of the gels revealed an extensive network of high aspect ratio fibers. The structure of the fibers altered dramatically upon addition of 20 wt % of the dye, resulting in aggregation and significant shortening of the fibrils. This study demonstrates the feasibility for these novel gels finding application as inexpensive and effective water purification platforms.
Resumo:
A series of hydro- and organo-supergelators have been synthesised via coupling of simple bis aromaticureas via alkyl amide linkages. These bis amide-aromatic-ureas exhibited reduced critical gelator concentrations, improved gelator stability, mechanical and dye removal properties for potential use in water purification, in comparison to related bis aromatic-ureas. Systematic structure studies via variation of the bis amide-aromatic-urea linker length as well as functionalization of the terminal aromatic moieties have enabled control over the gel properties.
Resumo:
A series of hydro- and organo-supergelators have been synthesised via coupling of simple bis aromaticureas via alkyl amide linkages. These bis amide-aromatic-ureas exhibited reduced critical gelator concentrations, improved gelator stability, mechanical and dye removal properties for potential use in water purification, in comparison to related bis aromatic-ureas. Systematic structure studies via variation of the bis amide-aromatic-urea linker length as well as functionalization of the terminal aromatic moieties have enabled control over the gel properties.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.
Resumo:
The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.
Resumo:
Stabilized water droplet dispersed in supercritical carbon dioxide fluid is demonstrated to be an excellent alternative solvent system to acetic acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions.
Resumo:
Headspace solid phase microextraction (HS-SPME) has been used to isolate the headspace volatiles formed during oxidation of oil-in-water emulsions. Qualitative and quantitative analyses with an internal standard were performed by GC-FID. Four sample temperatures for adsorption (30, 40, 50 and 60 C) and adsorption times in the range 10-25 min were tested to determine the conditions for the volatile concentration to reach equilibrium. The optimum conditions were at 50 C for 20 min. The method was applied to monitor changes in volatile composition during oxidation of an o/w emulsion. SPME was a simple, reproducible and sensitive method for the analysis of volatile oxidation products in oil-in-water emulsions. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Since first reported in 2005, mononuclear ruthenium water oxidation catalysts have attracted a great deal of attention due to their catalytic performance and synthetic flexibility. In particular, ligands coordinated to a Ru metal centre play an important role in the catalytic mechanisms, exhibiting significant impact on catalyst efficiency, stability and activity towards water oxidation. This review focuses on finding possible correlations between the ligand effects and activity of mononuclear Ru aqua and non-aqua complexes as water oxidation catalysts. The ligand effects highlighted in the text include the electronic nature of core ligands and their substituents, the trans–cis effect, steric hindrance and the strain effect, the net charge effect, the geometric arrangement of the aqua ligand and the supramolecular effects, e.g., hydrogen bonding and influence of a pendant base. The outcome is not always obvious at the present knowledge level. Deeper understanding of the ligand effects, based on new input data, is mandatory for further progress towards a rational development of novel catalysts featuring enhanced activity in water oxidation.
Resumo:
Apolipoprotein A-IV (apoA-IV) inhibits lipid peroxidation, thus demonstrating potential anti-atherogenic properties. The aim of this study was to investigate how the inhibition of low density lipoprotein (LDL) oxidation was influenced by common apoA-IV isoforms. Recombinant wild type apoA-IV (100 mu g/ml) significantly inhibited the oxidation of LDL (50 mu g protein/ml) by 5 mu M CuSO4 (P < 0.005), but not by 100 mu M CuSO4, suggesting that it may act by binding copper ions. ApoA-IV also inhibited the oxidation of LDL by the water-soluble free-radical generator 2,2'-azobis(amidinopropane) dihydrochloride (AAPH; I mM), as shown by the two-fold increase in the time for half maximal conjugated diene formation (T-1/2; P < 0.05) suggesting it can also scavenge free radicals in the aqueous phase. Compared to wild type apoA-IV, apoA-IV-S347 decreased T-1/2 by 15% (P = 0.036) and apoA-IV-H360 increased T-1/2 by 18% (P = 0.046). All apoA-IV isoforms increased the relative electrophoretic mobility of native LDL, suggesting apoA-IV can bind to LDL and acts as a site-specific antioxidant. The reduced inhibition of LDL oxidation by apoA-IV-S347 compared to wild type apoA-IV may account for the previous association of the APOA4 S347 variant with increased CHD risk and oxidative stress. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.
Resumo:
We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
One of the key hindrances on development of solid catalysts containing cobalt species for partial oxidation of organic molecules at mild conditions in conventional liquid phase is the severe metal leaching. The leached soluble Co species with a higher degree of freedom always out-performs those of solid supported Co species in oxidation catalysis. However, the homogeneous Co species concomitantly introduces separation problems. We have recently reponed for the first time, a new oxidation catalyst system for the oxidation of organic molecules in supercritical CO2 using the principle of micellar catalysis. [CF3(CF2)(8)COO](2)Co.xH(2)O (the fluorinated anionic moiety forms aqueous reverse micelles carrying water-soluble Co2+ cations in scCO(2)) was previously shown to be extremely active for the oxidation of toluene in the presence of sodium bromide in water-CO2 mixture, giving 98% conversion and 99% selectivity to benzoic acid at 120 degreesC. In this study, we show that the effects of varying the type of surfactant counterions and the length of the surfactant chains on catalysis. It is found that the use of [CF3(CF2)(8)COO](2)Mg.yH(2)O/Co(II) acetate is as effective as the [CF3(CF2)(8)COO](2)Co.xH(2)O and the fluorinated chain length used has a subtle effect on the catalytic rate measured. It is also demonstrated that this new type of micellar catalyst in scCO(2) can be easily separated via CO2 depressurisation and be reused without noticeable deactivation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.